Marielle Debeurre, Aurélien Grolet, Olivier Thomas
{"title":"Quaternion-based finite-element computation of nonlinear modes and frequency responses of geometrically exact beam structures in three dimensions","authors":"Marielle Debeurre, Aurélien Grolet, Olivier Thomas","doi":"10.1007/s11044-024-09999-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) deformations. It is based on the geometrically exact beam model, which is discretized with a finite-element method and solved entirely in the frequency domain with a harmonic balance method (HBM) coupled to an asymptotic numerical method (ANM) for continuation of periodic solutions. An important consideration is the parametrization of the rotations of the beam’s cross sections, much more demanding than in the 2D case. Here, the rotations are parametrized with quaternions, with the advantage of leading naturally to polynomial nonlinearities in the model, well suited for applying the ANM. Because of the HBM–ANM framework, this numerical strategy is capable of computing both the frequency response of the structure under periodic oscillations and its nonlinear modes (namely its backbone curves and deformed shapes in free conservative oscillations). To illustrate and validate this strategy, it is used to solve two 3D deformations test cases of the literature: a cantilever beam and a clamped–clamped beam subjected to one-to-one (1:1) internal resonance between two companion bending modes in the case of a nearly square cross section.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-024-09999-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) deformations. It is based on the geometrically exact beam model, which is discretized with a finite-element method and solved entirely in the frequency domain with a harmonic balance method (HBM) coupled to an asymptotic numerical method (ANM) for continuation of periodic solutions. An important consideration is the parametrization of the rotations of the beam’s cross sections, much more demanding than in the 2D case. Here, the rotations are parametrized with quaternions, with the advantage of leading naturally to polynomial nonlinearities in the model, well suited for applying the ANM. Because of the HBM–ANM framework, this numerical strategy is capable of computing both the frequency response of the structure under periodic oscillations and its nonlinear modes (namely its backbone curves and deformed shapes in free conservative oscillations). To illustrate and validate this strategy, it is used to solve two 3D deformations test cases of the literature: a cantilever beam and a clamped–clamped beam subjected to one-to-one (1:1) internal resonance between two companion bending modes in the case of a nearly square cross section.
期刊介绍:
The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations.
The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.