Ji Yang, Siyu Hu, Yarong Fang, Son Hoang, Li Li, Weiwei Yang, Zhenfeng Liang, Jian Wu, Jinpeng Hu, Wen Xiao, Chuanqi Pan, Zhu Luo, Jun Ding, Lizhi Zhang, Yanbing Guo*
{"title":"Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation","authors":"Ji Yang, Siyu Hu, Yarong Fang, Son Hoang, Li Li, Weiwei Yang, Zhenfeng Liang, Jian Wu, Jinpeng Hu, Wen Xiao, Chuanqi Pan, Zhu Luo, Jun Ding, Lizhi Zhang, Yanbing Guo*","doi":"10.1021/acscatal.9b02408","DOIUrl":null,"url":null,"abstract":"<p >The insights on the primary active oxygen specie and its relation with oxygen vacancy is essential for the design of low-temperature oxidation catalysts. Herein, oxygen vacancy-rich La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> with an ordered macroporous structure was integrated on the commercial ceramic monolith in large scale without additional adhesives via a facile in situ solution assembly. The constructed macropores not only contributed to the oxygen vacancy generation in catalyst preparation but also facilitated favorable mass transport during catalytic process. Combined with theoretical investigations and EPR, O<sub>2</sub>-TPD, H<sub>2</sub>-TPR observations, we revealed that monatomic oxygen ions (O<sup>–</sup>) are the primary oxygen active specie for perovskite oxide. And molecular O<sub>2</sub> is more favorably adsorbed and activated on surface oxygen vacancies via a one electron transfer process to form monatomic oxygen ions (O<sup>–</sup>), thus boosting richness of active O<sup>–</sup> and the low-temperature oxidation of CO. Different with the preferential Eley–Rideal (E-R) mechanism on pristine LSCO surface, Langmuir–Hinshelwood (L-H) mechanism, in which O<sup>–</sup> reacts with adsorbed CO to finish the oxidation reaction, was more favorable on the oxygen vacancy rich surface. Our work here elucidates the primary active oxygen specie as well as its origin over perovskite oxides and paves a feasible pathway for rational design of high-performance catalysts in heterogeneous reactions.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"9 11","pages":"9751–9763"},"PeriodicalIF":13.1000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscatal.9b02408","citationCount":"212","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.9b02408","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 212
Abstract
The insights on the primary active oxygen specie and its relation with oxygen vacancy is essential for the design of low-temperature oxidation catalysts. Herein, oxygen vacancy-rich La0.8Sr0.2CoO3 with an ordered macroporous structure was integrated on the commercial ceramic monolith in large scale without additional adhesives via a facile in situ solution assembly. The constructed macropores not only contributed to the oxygen vacancy generation in catalyst preparation but also facilitated favorable mass transport during catalytic process. Combined with theoretical investigations and EPR, O2-TPD, H2-TPR observations, we revealed that monatomic oxygen ions (O–) are the primary oxygen active specie for perovskite oxide. And molecular O2 is more favorably adsorbed and activated on surface oxygen vacancies via a one electron transfer process to form monatomic oxygen ions (O–), thus boosting richness of active O– and the low-temperature oxidation of CO. Different with the preferential Eley–Rideal (E-R) mechanism on pristine LSCO surface, Langmuir–Hinshelwood (L-H) mechanism, in which O– reacts with adsorbed CO to finish the oxidation reaction, was more favorable on the oxygen vacancy rich surface. Our work here elucidates the primary active oxygen specie as well as its origin over perovskite oxides and paves a feasible pathway for rational design of high-performance catalysts in heterogeneous reactions.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.