Romain Chevalier, Marco Montemurro, Régis Pommier, Anita Catapano
{"title":"A multi-scale modelling strategy to determine the effective elastic properties of Pinus pinaster (Ait.) accounting for variability","authors":"Romain Chevalier, Marco Montemurro, Régis Pommier, Anita Catapano","doi":"10.1007/s00226-024-01559-w","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-scale numerical homogenisation strategies have been used in the recent years to efficiently compute the effective elastic properties of heterogeneous materials. Coupled with a stochastic approach, they can be applied to natural material such as wood to take into account the variability of their properties. In the case of <i>Pinus pinaster</i> (Ait.), available elastic properties are based on those of generic softwood species due to a lack of data in the literature, reducing the overall precision of the results. This paper proposes an efficient numerical framework based on both a general numerical homogenisation method and the well-known Monte Carlo approach to determine the equivalent elastic properties at the macroscopic scale, with the associated variability, of the <i>Pinus pinaster</i> (Ait.) species. The coherence of the numerical model is established by comparison with analytical and experimental results available in the literature. The obtained results reveal very good accuracy in terms of equivalent elastic properties with a macroscopic behaviour characterised by an orthotropic symmetry. Moreover, the influence of the distance from the pith on the equivalent macroscopic elastic response is highlighted.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 4","pages":"1323 - 1352"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01559-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-scale numerical homogenisation strategies have been used in the recent years to efficiently compute the effective elastic properties of heterogeneous materials. Coupled with a stochastic approach, they can be applied to natural material such as wood to take into account the variability of their properties. In the case of Pinus pinaster (Ait.), available elastic properties are based on those of generic softwood species due to a lack of data in the literature, reducing the overall precision of the results. This paper proposes an efficient numerical framework based on both a general numerical homogenisation method and the well-known Monte Carlo approach to determine the equivalent elastic properties at the macroscopic scale, with the associated variability, of the Pinus pinaster (Ait.) species. The coherence of the numerical model is established by comparison with analytical and experimental results available in the literature. The obtained results reveal very good accuracy in terms of equivalent elastic properties with a macroscopic behaviour characterised by an orthotropic symmetry. Moreover, the influence of the distance from the pith on the equivalent macroscopic elastic response is highlighted.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.