Global monitoring of persistent organic pollutants (POPs) in biota, water and sediments: its role in screening for unregulated POPs, in compiling time trends of regulated POPs under the Stockholm Convention (SC) and their relevance for biodiversity in a changing climate

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Ramon Guardans
{"title":"Global monitoring of persistent organic pollutants (POPs) in biota, water and sediments: its role in screening for unregulated POPs, in compiling time trends of regulated POPs under the Stockholm Convention (SC) and their relevance for biodiversity in a changing climate","authors":"Ramon Guardans","doi":"10.1039/D4VA00023D","DOIUrl":null,"url":null,"abstract":"<p >This paper considers elements of the dynamic process of production dispersal and monitoring of persistent organic pollutants in the environment that has unfolded over the past 100 years. The interactions between science, industry, policy making and public health have taken many different forms in different parts of the world over time. The current state of affairs of Persistent Organic Pollutants (POPs) in the global environment is only partially understood and in flux because the components act in a distributed and asynchronous manner. We argue that the work under the Stockholm Convention (SC) since 2004 can be seen as synthesis of what has been done so far and a blueprint of what challenges lie ahead. The framework of UNEP, with the invaluable help of the Secretariat, has strung together over two decades a global network of scientists, indigenous groups, policy makers and other stakeholders interacting through meetings, documents and decisions, this effort has yielded an open, transparent and reliable method of work and a large repository of publicly available technical and scientific information. In this paper we consider in some detail the methods and the outcomes for screening substances of new potential concern, the methods and outcomes of monitoring trends in the context of effectiveness evaluation of the SC and the urgent need to converge in concept and quantification with the Convention on Biological Diversity (CBD) and the Framework Convention on Climate Change (FCCC).</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00023d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00023d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers elements of the dynamic process of production dispersal and monitoring of persistent organic pollutants in the environment that has unfolded over the past 100 years. The interactions between science, industry, policy making and public health have taken many different forms in different parts of the world over time. The current state of affairs of Persistent Organic Pollutants (POPs) in the global environment is only partially understood and in flux because the components act in a distributed and asynchronous manner. We argue that the work under the Stockholm Convention (SC) since 2004 can be seen as synthesis of what has been done so far and a blueprint of what challenges lie ahead. The framework of UNEP, with the invaluable help of the Secretariat, has strung together over two decades a global network of scientists, indigenous groups, policy makers and other stakeholders interacting through meetings, documents and decisions, this effort has yielded an open, transparent and reliable method of work and a large repository of publicly available technical and scientific information. In this paper we consider in some detail the methods and the outcomes for screening substances of new potential concern, the methods and outcomes of monitoring trends in the context of effectiveness evaluation of the SC and the urgent need to converge in concept and quantification with the Convention on Biological Diversity (CBD) and the Framework Convention on Climate Change (FCCC).

Abstract Image

Abstract Image

对生物群、水和沉积物中的持久性有机污染物(POPs)进行全球监测:其在筛查未受管制的持久性有机污染物、汇编《斯德哥尔摩公约》(SC)下受管制持久性有机污染物的时间趋势方面的作用及其在不断变化的气候中对生物多样性的意义
本文探讨了过去 100 年来环境中持久性有机污染物的生产扩散和监测动态过程的各个要素。随着时间的推移,科学、工业、政策制定和公共卫生之间的互动在世界不同地区呈现出多种不同的形式。全球环境中持久性有机污染物(POPs)的现状只得到了部分了解,而且还在不断变化,因为各组成部分以分布式和不同步的方式行事。我们认为,2004 年以来根据《斯德哥尔摩公约》(SC)开展的工作可以被视为迄今为止所做工作的总结和未来挑战的蓝图。二十年来,在秘书处的宝贵帮助下,联合国环境规划署(UNEP)框架通过会议、文件和决定,将科学家、土著群体、决策者和其他利益相关者的全球网络联系在一起,形成了一个公开、透明和可靠的工作方法,并建立了一个可公开获取的技术和科学信息的大型资料库。在本文中,我们将详细介绍筛选新的潜在关注物质的方法和结果、在常设委员会有效性评估背景下监测趋势的方法和结果,以及在概念和量化方面与《生物多样性公约》(CBD)和《气候变化框架公约》(FCCC)趋同的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信