Felix Feldmann, Oddbjørn Nødland, Jan Sagen, Børre Antonsen, Terje Sira, Jan Ludvig Vinningland, Robert Moe, Aksel Hiorth
{"title":"IORSim: A Mathematical Workflow for Field-Scale Geochemistry Simulations in Porous Media","authors":"Felix Feldmann, Oddbjørn Nødland, Jan Sagen, Børre Antonsen, Terje Sira, Jan Ludvig Vinningland, Robert Moe, Aksel Hiorth","doi":"10.1007/s11242-024-02094-9","DOIUrl":null,"url":null,"abstract":"<p>Reservoir modeling consists of two key components: the reproduction of the historical performance and the prediction of the future reservoir performance. Industry-standard reservoir simulators must run fast on enormous and possibly unstructured grids while yet guaranteeing a reasonable representation of physical and chemical processes. However, computational demands limit simulators in capturing involved physical and geochemical mechanisms, especially when chemical reactions interfere with reservoir flow. This paper presents a mathematical workflow, implemented in <i>IORSim</i>, that makes it possible to add geochemical calculations to porous media flow simulators without access to the source code of the original host simulator. An industry-standard reservoir simulator calculates velocity fields of the fluid phases (e.g., water, oil, and gas), while IORSim calculates the transport and reaction of geochemical components. Depending on the simulation mode, the geochemical solver estimates updated relative and/or capillary pressure curves to modify the global fluid flow. As one of the key innovations of the coupling mechanism, IORSim uses a sorting algorithm to permute the grid cells along flow directions. Instead of solving an over-dimensionalized global matrix calling a Newton–Raphson solver, the geochemical software tool treats the species balance as a set of local nonlinear problems. Moreover, IORSim applies basis swapping and splay tree techniques to accelerate geochemical computations in complex full-field reservoir models. The presented work introduces the mathematical IORSim concept, verifies the chemical species advection, and demonstrates the IORSim computation efficiency. After validating the geochemical solver against reference software, IORSim is used to investigate the impact of seawater injection on the NCS Ekofisk reservoir chemistry.</p>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02094-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02094-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir modeling consists of two key components: the reproduction of the historical performance and the prediction of the future reservoir performance. Industry-standard reservoir simulators must run fast on enormous and possibly unstructured grids while yet guaranteeing a reasonable representation of physical and chemical processes. However, computational demands limit simulators in capturing involved physical and geochemical mechanisms, especially when chemical reactions interfere with reservoir flow. This paper presents a mathematical workflow, implemented in IORSim, that makes it possible to add geochemical calculations to porous media flow simulators without access to the source code of the original host simulator. An industry-standard reservoir simulator calculates velocity fields of the fluid phases (e.g., water, oil, and gas), while IORSim calculates the transport and reaction of geochemical components. Depending on the simulation mode, the geochemical solver estimates updated relative and/or capillary pressure curves to modify the global fluid flow. As one of the key innovations of the coupling mechanism, IORSim uses a sorting algorithm to permute the grid cells along flow directions. Instead of solving an over-dimensionalized global matrix calling a Newton–Raphson solver, the geochemical software tool treats the species balance as a set of local nonlinear problems. Moreover, IORSim applies basis swapping and splay tree techniques to accelerate geochemical computations in complex full-field reservoir models. The presented work introduces the mathematical IORSim concept, verifies the chemical species advection, and demonstrates the IORSim computation efficiency. After validating the geochemical solver against reference software, IORSim is used to investigate the impact of seawater injection on the NCS Ekofisk reservoir chemistry.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).