Evaporation with Salt Crystallization in Capillaries of Different Cross Sections

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Li Dong, Shuiqing Liu, Guanhua Huang, Yunwu Xiong
{"title":"Evaporation with Salt Crystallization in Capillaries of Different Cross Sections","authors":"Li Dong,&nbsp;Shuiqing Liu,&nbsp;Guanhua Huang,&nbsp;Yunwu Xiong","doi":"10.1007/s11242-024-02106-8","DOIUrl":null,"url":null,"abstract":"<div><p>Evaporation-induced salt crystallization in complex porous structures is highly important for diverse scientific and industrial fields. Individual capillary tubes are elementary components used for investigating flow and transport in the interparticle interstices of porous media. In this study, the effects of the angularity and size of capillary tubes on water evaporation and salt crystallization were investigated through monitoring the receding meniscus, salt crystal morphology and growth process in capillary tubes with different cross sections. The Stefan diffusive and two-regional models were used to simulate evaporation from capillaries of different cross-sectional shapes in the absence and in the presence of salt, respectively. The evaporation process of deionized water in round tubes could be divided into two stages: the falling rate and the receding front stages. However, the evaporation process of deionized water for the square tubes, where a liquid film was formed, could be divided into three stages: a constant rate, receding front and falling rate stages. The salt evaporation rate was lower than that of deionized water owing to the lower water activity and obstruction from the salt crystals. The evaporation rate was proportional to the tube diameter for the round capillaries and inversely proportional to the inner side length of the square capillaries for both deionized water and the salt solution. Owing to the effect of thick liquid films on both the drying rate and ion transport, crystallization occurred in the bulk meniscus within a round tube, while crystallization preferentially occurred at the tube entrance for the square tubes. The agreement between the experimental observations and model simulations revealed that the two-region model was capable of describing the evaporation-induced salt crystallization in the square tubes.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 10-11","pages":"2057 - 2079"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02106-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporation-induced salt crystallization in complex porous structures is highly important for diverse scientific and industrial fields. Individual capillary tubes are elementary components used for investigating flow and transport in the interparticle interstices of porous media. In this study, the effects of the angularity and size of capillary tubes on water evaporation and salt crystallization were investigated through monitoring the receding meniscus, salt crystal morphology and growth process in capillary tubes with different cross sections. The Stefan diffusive and two-regional models were used to simulate evaporation from capillaries of different cross-sectional shapes in the absence and in the presence of salt, respectively. The evaporation process of deionized water in round tubes could be divided into two stages: the falling rate and the receding front stages. However, the evaporation process of deionized water for the square tubes, where a liquid film was formed, could be divided into three stages: a constant rate, receding front and falling rate stages. The salt evaporation rate was lower than that of deionized water owing to the lower water activity and obstruction from the salt crystals. The evaporation rate was proportional to the tube diameter for the round capillaries and inversely proportional to the inner side length of the square capillaries for both deionized water and the salt solution. Owing to the effect of thick liquid films on both the drying rate and ion transport, crystallization occurred in the bulk meniscus within a round tube, while crystallization preferentially occurred at the tube entrance for the square tubes. The agreement between the experimental observations and model simulations revealed that the two-region model was capable of describing the evaporation-induced salt crystallization in the square tubes.

Abstract Image

Abstract Image

不同截面毛细管中的蒸发与盐结晶
复杂多孔结构中的蒸发诱导盐结晶对各种科学和工业领域都非常重要。单个毛细管是用于研究多孔介质颗粒间隙中流动和传输的基本元件。本研究通过监测不同截面毛细管中的后退半月板、盐晶体形态和生长过程,研究了毛细管的角度和尺寸对水蒸发和盐结晶的影响。采用斯特凡扩散模型和双区域模型分别模拟了不同截面形状的毛细管在无盐和有盐情况下的蒸发过程。去离子水在圆管中的蒸发过程可分为两个阶段:速率下降阶段和前沿后退阶段。然而,在形成液膜的方形管中,去离子水的蒸发过程可分为三个阶段:恒定速率阶段、前沿后退阶段和速率下降阶段。由于水的活性较低以及盐晶体的阻碍,盐的蒸发速率低于去离子水。对于去离子水和盐溶液,圆形毛细管的蒸发率与管径成正比,而方形毛细管的蒸发率与内边长成反比。由于厚液膜对干燥速率和离子传输都有影响,结晶发生在圆管内的主体半月板上,而结晶则优先发生在方管的管口处。实验观测结果与模型模拟结果之间的一致性表明,双区域模型能够描述方形管中由蒸发引起的盐结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信