A necessary and sufficient condition for double coset lumping of Markov chains on groups with an application to the random to top shuffle

Pub Date : 2024-03-29 DOI:10.1090/proc/16853
John Britnell, Mark Wildon
{"title":"A necessary and sufficient condition for double coset lumping of Markov chains on groups with an application to the random to top shuffle","authors":"John Britnell, Mark Wildon","doi":"10.1090/proc/16853","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a probability measure on a finite group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that a necessary and sufficient condition for the random walk driven by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to induce a Markov chain on the double coset space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H minus upper G slash upper H\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi mathvariant=\"normal\">∖</mml:mi> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H\\backslash G/H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q left-parenthesis g upper H right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Q(gH)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is constant as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> ranges over any double coset of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=\"application/x-tex\">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We obtain this result as a corollary of a more general theorem on the double cosets <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H minus upper G slash upper K\"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi mathvariant=\"normal\">∖</mml:mi> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H \\backslash G / K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an arbitrary subgroup of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As an application we study a variation on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-top to random shuffle which we show induces an irreducible, recurrent, reversible and ergodic Markov chain on the double cosets of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal y normal m Subscript r Baseline times normal upper S normal y normal m Subscript n minus r\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">S</mml:mi> <mml:mi mathvariant=\"normal\">y</mml:mi> <mml:mi mathvariant=\"normal\">m</mml:mi> </mml:mrow> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>×</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">S</mml:mi> <mml:mi mathvariant=\"normal\">y</mml:mi> <mml:mi mathvariant=\"normal\">m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>r</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sym}_r \\times \\mathrm {Sym}_{n-r}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper S normal y normal m Subscript n\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">S</mml:mi> <mml:mi mathvariant=\"normal\">y</mml:mi> <mml:mi mathvariant=\"normal\">m</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathrm {Sym}_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The transition matrix of the induced walk has remarkable spectral properties: we find its invariant distribution and its eigenvalues and hence determine its rate of convergence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Q Q be a probability measure on a finite group G G , and let H H be a subgroup of G G . We show that a necessary and sufficient condition for the random walk driven by Q Q on G G to induce a Markov chain on the double coset space H G / H H\backslash G/H is that Q ( g H ) Q(gH) is constant as g g ranges over any double coset of H H in G G . We obtain this result as a corollary of a more general theorem on the double cosets H G / K H \backslash G / K for K K an arbitrary subgroup of G G . As an application we study a variation on the r r -top to random shuffle which we show induces an irreducible, recurrent, reversible and ergodic Markov chain on the double cosets of S y m r × S y m n r \mathrm {Sym}_r \times \mathrm {Sym}_{n-r} in S y m n \mathrm {Sym}_n . The transition matrix of the induced walk has remarkable spectral properties: we find its invariant distribution and its eigenvalues and hence determine its rate of convergence.

分享
查看原文
群上马尔可夫链双余弦凑合的必要条件和充分条件,以及对随机到顶洗牌的应用
设 Q Q 是有限群 G G 上的概率度量,设 H H 是 G G 的一个子群。我们证明,由 Q Q 在 G G 上驱动的随机游走在双余弦空间 H ∖ G / H H\backslash G/H 上诱发马尔科夫链的必要条件和充分条件是,Q ( g H ) Q(gH) 随着 g g 在 G G 中 H H 的任何双余弦上的范围而恒定。我们得到的这个结果是一个关于双余集 H ∖ G / K H\backslash G / K 的更一般的定理的推论,即 K K 是 G G 的一个任意子群。作为一个应用,我们研究了 r r -top 到随机洗牌的变体,我们证明它在 S y m n \mathrm {Sym}_n 的 S y m r × S y m n - r \mathrm {Sym}_r \times \mathrm {Sym}_{n-r} 的双余弦上诱导了一个不可还原、循环、可逆和遍历的马尔可夫链。诱导行走的过渡矩阵具有显著的频谱特性:我们可以找到它的不变分布和特征值,从而确定它的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信