Universal convexity and range problems of shifted hypergeometric functions

IF 0.8 3区 数学 Q2 MATHEMATICS
Toshiyuki Sugawa, Li-Mei Wang, Chengfa Wu
{"title":"Universal convexity and range problems of shifted hypergeometric functions","authors":"Toshiyuki Sugawa, Li-Mei Wang, Chengfa Wu","doi":"10.1090/proc/16849","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we study the shifted hypergeometric function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis z right-parenthesis equals z 2 upper F 1 left-parenthesis a comma b semicolon c semicolon z right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>z</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>F</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>;</mml:mo> <mml:mi>c</mml:mi> <mml:mo>;</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(z)=z_{2}F_{1}(a,b;c;z)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for real parameters with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than a less-than-or-equal-to b less-than-or-equal-to c\"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>a</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>b</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">0&gt;a\\le b\\le c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its variant <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g left-parenthesis z right-parenthesis equals z 2 upper F 2 left-parenthesis a comma b semicolon c semicolon z squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>z</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>F</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>;</mml:mo> <mml:mi>c</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g(z)=z_{2}F_{2}(a,b;c;z^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our first purpose is to solve the range problems for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> posed by Ponnusamy and Vuorinen [Rocky Mountain J. Math. 31 (2001), pp. 327–353]. Ruscheweyh, Salinas and Sugawa [Israel J. Math. 171 (2009), pp. 285–304] developed the theory of universal prestarlike functions on the slit domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C minus left-bracket 1 comma plus normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mo>∖</mml:mo> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}\\setminus [1,+\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and showed universal starlikeness of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under some assumptions on the parameters. However, there has been no systematic study of universal convexity of the shifted hypergeometric functions except for the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b equals 1\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our second purpose is to show universal convexity of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under certain conditions on the parameters.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"12 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16849","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we study the shifted hypergeometric function f ( z ) = z 2 F 1 ( a , b ; c ; z ) f(z)=z_{2}F_{1}(a,b;c;z) for real parameters with 0 > a b c 0>a\le b\le c and its variant g ( z ) = z 2 F 2 ( a , b ; c ; z 2 ) g(z)=z_{2}F_{2}(a,b;c;z^2) . Our first purpose is to solve the range problems for f f and g g posed by Ponnusamy and Vuorinen [Rocky Mountain J. Math. 31 (2001), pp. 327–353]. Ruscheweyh, Salinas and Sugawa [Israel J. Math. 171 (2009), pp. 285–304] developed the theory of universal prestarlike functions on the slit domain C [ 1 , + ) \mathbb {C}\setminus [1,+\infty ) and showed universal starlikeness of f f under some assumptions on the parameters. However, there has been no systematic study of universal convexity of the shifted hypergeometric functions except for the case b = 1 b=1 . Our second purpose is to show universal convexity of f f under certain conditions on the parameters.

移位超几何函数的普遍凸性和范围问题
本文研究了实参数为 0 > a ≤ b ≤ c 0>a\le b\le c 时的移位超几何函数 f ( z ) = z 2 F 1 ( a , b ; c ; z ) f(z)=z_{2}F_{1}(a,b;c.) f(z)=z_{2}F_{1}(a,b;c.)和它的变体 g ( z ) = z 2 F 2 ( a , b ; c ; z 2 ) g(z)=z_{2}F_{2}(a,b;c;z^2) 。我们的第一个目的是解决 Ponnusamy 和 Vuorinen [Rocky Mountain J. Math. 31 (2001),pp.]Ruscheweyh, Salinas and Sugawa [Israel J. Math. 171 (2009), pp. \mathbb {C}\setminus [1,+\infty ) 并在参数的一些假设下证明了 f f 的普遍星象性。然而,除了 b = 1 b=1 的情况之外,还没有系统地研究过移位超几何函数的普遍凸性。我们的第二个目的是在参数的某些条件下证明 f f 的普遍凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信