{"title":"On Pólya’s random walk constants","authors":"Robert Gaunt, Saralees Nadarajah, Tibor Pogány","doi":"10.1090/proc/16854","DOIUrl":null,"url":null,"abstract":"<p>A celebrated result in probability theory is that a simple symmetric random walk on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional lattice <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript d\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is recurrent for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 1 comma 2\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d=1,2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and transient for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d\\geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this note, we derive a closed-form expression, in terms of the Lauricella function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F Subscript upper C\"> <mml:semantics> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">F_C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for the return probability for all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d\\geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Previously, a closed-form formula had only been available for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16854","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A celebrated result in probability theory is that a simple symmetric random walk on the dd-dimensional lattice Zd\mathbb {Z}^d is recurrent for d=1,2d=1,2 and transient for d≥3d\geq 3. In this note, we derive a closed-form expression, in terms of the Lauricella function FCF_C, for the return probability for all d≥3d\geq 3. Previously, a closed-form formula had only been available for d=3d=3.
概率论中一个著名的结果是,在 d d 维网格 Z d \mathbb {Z}^d 上的简单对称随机行走在 d = 1 , 2 d=1,2 时是经常性的,而在 d ≥ 3 d\geq 3 时是瞬时性的。在本说明中,我们用劳里切拉函数 F C F_C 为所有 d ≥ 3 d\geq 3 的回归概率推导出一个闭式表达式。在此之前,只有 d=3 d=3 时才有闭式公式。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.