Optimizing the quantum capacitance of AsXBr/AsYBr ((X ≠ Y) = S, Se and Te) Janus heterostructures for high-performance supercapacitors†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Himalay Kolavada, Gaushiya A. Shaikh, P. N. Gajjar and Sanjeev K. Gupta
{"title":"Optimizing the quantum capacitance of AsXBr/AsYBr ((X ≠ Y) = S, Se and Te) Janus heterostructures for high-performance supercapacitors†","authors":"Himalay Kolavada, Gaushiya A. Shaikh, P. N. Gajjar and Sanjeev K. Gupta","doi":"10.1039/D4QM00345D","DOIUrl":null,"url":null,"abstract":"<p >We systematically investigated the properties of AsXBr/AsYBr ((X ≠ Y) = S, Se and Te) Janus heterostructures with the goal of tailoring their characteristics for advanced supercapacitor applications. To our knowledge, this is the first reported study on these Janus heterostructures, thus offering novel insights into their properties. By employing density functional theory (DFT), we uncovered crucial insights into these materials. Notably, we found reduced indirect band gaps of 1.39 eV for AsSBr/AsSeBr, 1.08 eV for AsSBr/AsTeBr, and 1.23 eV for AsSeBr/AsTeBr, indicating their potential for efficient charge storage. Mechanical stability was confirmed, with ultra-low Young's modulus values for all structures. Our exploration of chalcogenides’ interchange effect in supercapacitors leads to the discovery of remarkable maximum quantum capacitance values: 426.62 μF cm<small><sup>−2</sup></small> for AsSBr/AsSeBr, 430.12 μF cm<small><sup>−2</sup></small> for AsSBr/AsTeBr, and 536.86 μF cm<small><sup>−2</sup></small> for AsSeBr/AsTeBr, respectively. Furthermore, our investigation into surface charge dynamics suggested that these materials act as cathode-type electrodes, enhancing their suitability for supercapacitor configurations. To ensure dynamical stability, we conducted detailed analysis of the phonon dispersion curves of these Janus heterostructures. These curves revealed no imaginary frequencies in the Brillouin zone, confirming the dynamical stability of AsSBr/AsSeBr and AsSeBr/AsTeBr Janus heterostructures. Additionally, our exploration extended to the assessment of the thermal properties, including the Seebeck coefficient (<em>S</em>), electronic conductivity (<em>σ</em>), and thermal conductivity (<em>κ</em>), of all heterostructures. The results, obtained through this methodology, utilized the SIESTA code to compute overlaps between Bloch states and trial localized orbitals. Subsequently, we employed Wannier90 to generate maximally-localized Wannier functions (MLWFs), which served as the basis set for interpolating band structures and computing transport properties <em>via</em> the BoltzWann module.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 16","pages":" 2775-2787"},"PeriodicalIF":6.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00345d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We systematically investigated the properties of AsXBr/AsYBr ((X ≠ Y) = S, Se and Te) Janus heterostructures with the goal of tailoring their characteristics for advanced supercapacitor applications. To our knowledge, this is the first reported study on these Janus heterostructures, thus offering novel insights into their properties. By employing density functional theory (DFT), we uncovered crucial insights into these materials. Notably, we found reduced indirect band gaps of 1.39 eV for AsSBr/AsSeBr, 1.08 eV for AsSBr/AsTeBr, and 1.23 eV for AsSeBr/AsTeBr, indicating their potential for efficient charge storage. Mechanical stability was confirmed, with ultra-low Young's modulus values for all structures. Our exploration of chalcogenides’ interchange effect in supercapacitors leads to the discovery of remarkable maximum quantum capacitance values: 426.62 μF cm−2 for AsSBr/AsSeBr, 430.12 μF cm−2 for AsSBr/AsTeBr, and 536.86 μF cm−2 for AsSeBr/AsTeBr, respectively. Furthermore, our investigation into surface charge dynamics suggested that these materials act as cathode-type electrodes, enhancing their suitability for supercapacitor configurations. To ensure dynamical stability, we conducted detailed analysis of the phonon dispersion curves of these Janus heterostructures. These curves revealed no imaginary frequencies in the Brillouin zone, confirming the dynamical stability of AsSBr/AsSeBr and AsSeBr/AsTeBr Janus heterostructures. Additionally, our exploration extended to the assessment of the thermal properties, including the Seebeck coefficient (S), electronic conductivity (σ), and thermal conductivity (κ), of all heterostructures. The results, obtained through this methodology, utilized the SIESTA code to compute overlaps between Bloch states and trial localized orbitals. Subsequently, we employed Wannier90 to generate maximally-localized Wannier functions (MLWFs), which served as the basis set for interpolating band structures and computing transport properties via the BoltzWann module.

Abstract Image

Abstract Image

优化 AsXBr/AsYBr ((X≠Y) = S、Se 和 Te)Janus 异质结构的量子电容,实现高性能超级电容器
我们系统地研究了 AsXBr/AsYBr((X≠Y) = S、Se 和 Te)Janus 异质结构的特性,目的是为先进的超级电容器应用定制其特性。据我们所知,这是首次报道有关这些 Janus 异质结构的研究,从而为了解其特性提供了新的视角。通过采用密度泛函理论(DFT),我们发现了对这些材料的重要见解。值得注意的是,我们发现 AsSBr/AsSeBr 的间接带隙降低到 1.39 eV,AsSBr/AsTeBr 降低到 1.08 eV,AsSeBr/AsTeBr 降低到 1.23 eV,这表明它们具有高效电荷存储的潜力。机械稳定性也得到了证实,所有结构的杨氏模量值都很低。我们对超级电容器中的卤化物交换效应进行了探索,发现了显著的最大量子电容值:AsSBr/AsSeBr 的最大量子电容值为 426.62 μF cm-2,AsSBr/AsTeBr 的最大量子电容值为 430.12 μF cm-2,AsSeBr/AsTeBr 的最大量子电容值为 536.86 μF cm-2。此外,我们对表面电荷动力学的研究表明,这些材料可用作阴极型电极,从而提高了它们在超级电容器配置中的适用性。为了确保动态稳定性,我们对这些杰纳斯异质结构的声子频散曲线进行了详细分析。这些曲线显示布里渊区没有虚频,证实了 AsSBr/AsSeBr 和 AsSeBr/AsTeBr Janus 异质结构的动态稳定性。此外,我们还对所有异质结构的热特性进行了评估,包括塞贝克系数 (S)、电子电导率 (σ) 和热导率 (κ)。通过这种方法获得的结果利用了 SIESTA 代码来计算布洛赫态与试验局部轨道之间的重叠。随后,我们利用 Wannier90 生成最大定位 Wannier 函数 (MLWF),并以此为基础,通过 BoltzWann 模块对带状结构进行插值并计算传输特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信