{"title":"Influence of ionic impurities on the dielectric properties of lignin","authors":"Sergey S. Khviyuzov, Aleksandr S. Volkov","doi":"10.1002/pat.6467","DOIUrl":null,"url":null,"abstract":"Lignin is one of the most common biopolymers. The application of the electrophysical properties of the polymer is one of the directions of its use. The effect of impurities potassium bromide with an ionic crystal lattice on the electrophysical properties of lignin has been shown. The study of the frequency dependences of the specific electrical conductivity and the components of the complex dielectric permittivity in the frequency range from 6 × 10<jats:sup>−2</jats:sup> to 6 × 10<jats:sup>7</jats:sup> rad s<jats:sup>−1</jats:sup> was carried out. The nonadditivity of the electrophysical properties of the lignin‐potassium bromide system has been shown. It is established that the relaxation time of the <jats:italic>π</jats:italic>‐electrons of the aromatic rings of lignin depends on the content of potassium bromide in the mixture and varies from 1.6 × 10<jats:sup>−7</jats:sup> (100% lignin) to 7.5 × 10<jats:sup>−4</jats:sup> s (1% of KBr in mixture). The orientation of the positive charge of potassium atom of the KBr dipole atom to the <jats:italic>π</jats:italic>‐electrons of the benzene ring of lignin leads to change of high‐frequency relaxation time. This effect can be used in frequency filter to eliminate electronic polarization in the high‐frequency region. Thus, the polarization of ionic impurities has a significant effect on the dielectric properties of lignin in the region of medium and high frequencies of alternating electric field.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"37 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6467","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin is one of the most common biopolymers. The application of the electrophysical properties of the polymer is one of the directions of its use. The effect of impurities potassium bromide with an ionic crystal lattice on the electrophysical properties of lignin has been shown. The study of the frequency dependences of the specific electrical conductivity and the components of the complex dielectric permittivity in the frequency range from 6 × 10−2 to 6 × 107 rad s−1 was carried out. The nonadditivity of the electrophysical properties of the lignin‐potassium bromide system has been shown. It is established that the relaxation time of the π‐electrons of the aromatic rings of lignin depends on the content of potassium bromide in the mixture and varies from 1.6 × 10−7 (100% lignin) to 7.5 × 10−4 s (1% of KBr in mixture). The orientation of the positive charge of potassium atom of the KBr dipole atom to the π‐electrons of the benzene ring of lignin leads to change of high‐frequency relaxation time. This effect can be used in frequency filter to eliminate electronic polarization in the high‐frequency region. Thus, the polarization of ionic impurities has a significant effect on the dielectric properties of lignin in the region of medium and high frequencies of alternating electric field.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.