Formal Verification of Universal Numbers using Theorem Proving

Adnan Rashid, Ayesha Gauhar, Osman Hasan, Sa’ed Abed, Imtiaz Ahmad
{"title":"Formal Verification of Universal Numbers using Theorem Proving","authors":"Adnan Rashid, Ayesha Gauhar, Osman Hasan, Sa’ed Abed, Imtiaz Ahmad","doi":"10.1007/s10836-024-06123-9","DOIUrl":null,"url":null,"abstract":"<p>A universal number (<span>Unum</span>) is a number representation format that can reduce the memory contention issues in multicore processors and parallel computing systems by optimizing the bit storage in the arithmetic operations. Given the safety-critical nature of applications of <span>Unum</span> format, there is a dire need to rigorously assess the correctness of the <span>Unum</span> based arithmetic operations. <span>Unums</span> are of three types, namely, Unum-I, Unum-II and <span>Unum-III</span> (commonly known as <span>Posits</span>). In this paper, we provide a higher-order-logic formalization of <span>Unum-III</span> (<span>posits</span>). In particular, we formally model a <span>posit</span> format (binary encoding of a <span>posit</span>), which is comprised of the sign, exponent, regime and fraction bits, using the <span>HOL Light</span> theorem prover. In order to prove the correctness of a <span>posit</span> format, we formally verify various properties regarding conversions of a real number to a <span>posit</span> and a <span>posit</span> to a real number and the scaling factors of the regime, exponent and fraction bits of a <span>posit</span> using <span>HOL Light</span>.</p>","PeriodicalId":501485,"journal":{"name":"Journal of Electronic Testing","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10836-024-06123-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A universal number (Unum) is a number representation format that can reduce the memory contention issues in multicore processors and parallel computing systems by optimizing the bit storage in the arithmetic operations. Given the safety-critical nature of applications of Unum format, there is a dire need to rigorously assess the correctness of the Unum based arithmetic operations. Unums are of three types, namely, Unum-I, Unum-II and Unum-III (commonly known as Posits). In this paper, we provide a higher-order-logic formalization of Unum-III (posits). In particular, we formally model a posit format (binary encoding of a posit), which is comprised of the sign, exponent, regime and fraction bits, using the HOL Light theorem prover. In order to prove the correctness of a posit format, we formally verify various properties regarding conversions of a real number to a posit and a posit to a real number and the scaling factors of the regime, exponent and fraction bits of a posit using HOL Light.

Abstract Image

利用定理证明对万国数进行形式验证
通用数(Unum)是一种数字表示格式,通过优化算术运算中的位存储,可以减少多核处理器和并行计算系统中的内存争用问题。鉴于 Unum 格式应用的安全关键性,迫切需要严格评估基于 Unum 的算术运算的正确性。Unum 有三种类型,即 Unum-I、Unum-II 和 Unum-III(通常称为 Posits)。在本文中,我们对 Unum-III(Posits)进行了高阶逻辑形式化。特别是,我们使用 HOL Light 定理证明器正式模拟了由符号位、指数位、制度位和分数位组成的 Posit 格式(Posit 的二进制编码)。为了证明 posit 格式的正确性,我们使用 HOL Light 正式验证了实数到 posit 和 posit 到实数转换的各种属性,以及 posit 的制度位、指数位和分数位的缩放因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信