Rubén Seoane Souto, Dushko Kuzmanovski, Ignacio Sardinero, Pablo Burset, Alexander V. Balatsky
{"title":"P-wave Pairing Near a Spin-Split Josephson Junction","authors":"Rubén Seoane Souto, Dushko Kuzmanovski, Ignacio Sardinero, Pablo Burset, Alexander V. Balatsky","doi":"10.1007/s10909-024-03176-0","DOIUrl":null,"url":null,"abstract":"<div><p>Superconductivity and magnetism are competing effects that can coexist in certain regimes. Their co-existence leads to unexpected new behaviors that include the onset of exotic electron pair mechanisms and topological phases. In this work, we study the properties of a Josephson junction between two spin-split superconductors. The spin-splitting in the superconductors can arise from either the coupling to a ferromagnetic material or an external magnetic field. The properties of the junction are dominated by the Andreev bound states that are also split. One of these states can cross the superconductor’s Fermi level, leading to a ground-state transition characterized by a suppressed supercurrent. We interpret the supercurrent blockade as coming from a dominance of p-wave pairing close to the junction, where the electrons are at both sides. To support this interpretation, we analyze the different pairing channels and show that p-wave pairing is favored in the case where the magnetization of the two superconductors is parallel and suppressed in the anti-parallel case. We also analyze the noise spectrum that shows signatures of the ground-state transition in the form of an elevated zero-frequency noise.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03176-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03176-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Superconductivity and magnetism are competing effects that can coexist in certain regimes. Their co-existence leads to unexpected new behaviors that include the onset of exotic electron pair mechanisms and topological phases. In this work, we study the properties of a Josephson junction between two spin-split superconductors. The spin-splitting in the superconductors can arise from either the coupling to a ferromagnetic material or an external magnetic field. The properties of the junction are dominated by the Andreev bound states that are also split. One of these states can cross the superconductor’s Fermi level, leading to a ground-state transition characterized by a suppressed supercurrent. We interpret the supercurrent blockade as coming from a dominance of p-wave pairing close to the junction, where the electrons are at both sides. To support this interpretation, we analyze the different pairing channels and show that p-wave pairing is favored in the case where the magnetization of the two superconductors is parallel and suppressed in the anti-parallel case. We also analyze the noise spectrum that shows signatures of the ground-state transition in the form of an elevated zero-frequency noise.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.