Yan Xing, Xu Han, Xiaodong Pan, Dong An, Weidong Liu, Yuanshen Bai
{"title":"EMG-YOLO: road crack detection algorithm for edge computing devices","authors":"Yan Xing, Xu Han, Xiaodong Pan, Dong An, Weidong Liu, Yuanshen Bai","doi":"10.3389/fnbot.2024.1423738","DOIUrl":null,"url":null,"abstract":"IntroductionRoad cracks significantly shorten the service life of roads. Manual detection methods are inefficient and costly. The YOLOv5 model has made some progress in road crack detection. However, issues arise when deployed on edge computing devices. The main problem is that edge computing devices are directly connected to sensors. This results in the collection of noisy, poor-quality data. This problem adds computational burden to the model, potentially impacting its accuracy. To address these issues, this paper proposes a novel road crack detection algorithm named EMG-YOLO.MethodsFirst, an Efficient Decoupled Header is introduced in YOLOv5 to optimize the head structure. This approach separates the classification task from the localization task. Each task can then focus on learning its most relevant features. This significantly reduces the model’s computational resources and time. It also achieves faster convergence rates. Second, the IOU loss function in the model is upgraded to the MPDIOU loss function. This function works by minimizing the top-left and bottom-right point distances between the predicted bounding box and the actual labeled bounding box. The MPDIOU loss function addresses the complex computation and high computational burden of the current YOLOv5 model. Finally, the GCC3 module replaces the traditional convolution. It performs global context modeling with the input feature map to obtain global context information. This enhances the model’s detection capabilities on edge computing devices.ResultsExperimental results show that the improved model has better performance in all parameter indicators compared to current mainstream algorithms. The EMG-YOLO model improves the accuracy of the YOLOv5 model by 2.7%. The mAP (0.5) and mAP (0.9) are improved by 2.9% and 0.9%, respectively. The new algorithm also outperforms the YOLOv5 model in complex environments on edge computing devices.DiscussionThe EMG-YOLO algorithm proposed in this paper effectively addresses the issues of poor data quality and high computational burden on edge computing devices. This is achieved through optimizing the model head structure, upgrading the loss function, and introducing global context modeling. Experimental results demonstrate significant improvements in both accuracy and efficiency, especially in complex environments. Future research can further optimize this algorithm and explore more lightweight and efficient object detection models for edge computing devices.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"29 17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1423738","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionRoad cracks significantly shorten the service life of roads. Manual detection methods are inefficient and costly. The YOLOv5 model has made some progress in road crack detection. However, issues arise when deployed on edge computing devices. The main problem is that edge computing devices are directly connected to sensors. This results in the collection of noisy, poor-quality data. This problem adds computational burden to the model, potentially impacting its accuracy. To address these issues, this paper proposes a novel road crack detection algorithm named EMG-YOLO.MethodsFirst, an Efficient Decoupled Header is introduced in YOLOv5 to optimize the head structure. This approach separates the classification task from the localization task. Each task can then focus on learning its most relevant features. This significantly reduces the model’s computational resources and time. It also achieves faster convergence rates. Second, the IOU loss function in the model is upgraded to the MPDIOU loss function. This function works by minimizing the top-left and bottom-right point distances between the predicted bounding box and the actual labeled bounding box. The MPDIOU loss function addresses the complex computation and high computational burden of the current YOLOv5 model. Finally, the GCC3 module replaces the traditional convolution. It performs global context modeling with the input feature map to obtain global context information. This enhances the model’s detection capabilities on edge computing devices.ResultsExperimental results show that the improved model has better performance in all parameter indicators compared to current mainstream algorithms. The EMG-YOLO model improves the accuracy of the YOLOv5 model by 2.7%. The mAP (0.5) and mAP (0.9) are improved by 2.9% and 0.9%, respectively. The new algorithm also outperforms the YOLOv5 model in complex environments on edge computing devices.DiscussionThe EMG-YOLO algorithm proposed in this paper effectively addresses the issues of poor data quality and high computational burden on edge computing devices. This is achieved through optimizing the model head structure, upgrading the loss function, and introducing global context modeling. Experimental results demonstrate significant improvements in both accuracy and efficiency, especially in complex environments. Future research can further optimize this algorithm and explore more lightweight and efficient object detection models for edge computing devices.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.