Ultrasensitive monitoring of Ciprofloxacin with green reduced graphene oxide@clay composite

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
M. Azriouil, A. Hrioua, B. Chhaibi, F. Laghrib, A. Farahi, M. Bakasse, S. Lahrich, M. A. El Mhammedi
{"title":"Ultrasensitive monitoring of Ciprofloxacin with green reduced graphene oxide@clay composite","authors":"M. Azriouil,&nbsp;A. Hrioua,&nbsp;B. Chhaibi,&nbsp;F. Laghrib,&nbsp;A. Farahi,&nbsp;M. Bakasse,&nbsp;S. Lahrich,&nbsp;M. A. El Mhammedi","doi":"10.1002/elan.202300254","DOIUrl":null,"url":null,"abstract":"<p>The accumulation of harmful residuals can lead to voluminous environmental problems and then negatively affect human health. For this purpose, it is necessary to focus on the development of a rapid and sensitive strategy for its monitoring. In this work, a green, fairly fast, inexpensive and sensitive electrochemical sensor was developed to determine and monitor Cipro residues in various samples such as environmental resources, wastewater, urine, and drug formulations (Flonox 500 Aflox 500 and Cifloxine 250). It consists of a carbon paste electrode (CPE) modified with clay-supported reduced graphene oxide composite (GrGO/CL@CPE). The rGO was prepared using green and easily chemically converted GO (electrochemically prepared) to rGO nanosheets based on glucose (G) as a green reducing agent (GrGO). The proposed sensor demonstrates a high electro-oxidation signal compared with other based sensors, and the oxidation potential was found to be reduced by around 35 mV. The GrGO/CL@CPE was used for monitoring Cipro in the range of 0.05–10 μM in phosphate buffer at a biological pH of 7 (PB_7) and it offered a low detection limit (DL) (<i>S/N=3</i>) of 0.048 μM. Furthermore, it was found to be capable of detecting Cipro in pronounced samples with excellent results, offering promising prospects for actual clinical assays.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"36 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202300254","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of harmful residuals can lead to voluminous environmental problems and then negatively affect human health. For this purpose, it is necessary to focus on the development of a rapid and sensitive strategy for its monitoring. In this work, a green, fairly fast, inexpensive and sensitive electrochemical sensor was developed to determine and monitor Cipro residues in various samples such as environmental resources, wastewater, urine, and drug formulations (Flonox 500 Aflox 500 and Cifloxine 250). It consists of a carbon paste electrode (CPE) modified with clay-supported reduced graphene oxide composite (GrGO/CL@CPE). The rGO was prepared using green and easily chemically converted GO (electrochemically prepared) to rGO nanosheets based on glucose (G) as a green reducing agent (GrGO). The proposed sensor demonstrates a high electro-oxidation signal compared with other based sensors, and the oxidation potential was found to be reduced by around 35 mV. The GrGO/CL@CPE was used for monitoring Cipro in the range of 0.05–10 μM in phosphate buffer at a biological pH of 7 (PB_7) and it offered a low detection limit (DL) (S/N=3) of 0.048 μM. Furthermore, it was found to be capable of detecting Cipro in pronounced samples with excellent results, offering promising prospects for actual clinical assays.

利用绿色还原氧化石墨烯粘土复合材料对环丙沙星进行超灵敏监测
na
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信