Non-radial ground state solutions for fractional Schrödinger–Poisson systems in \(\mathbb {R}^{2}\)

IF 1 3区 数学 Q1 MATHEMATICS
Guofeng Che, Juntao Sun, Tsung-Fang Wu
{"title":"Non-radial ground state solutions for fractional Schrödinger–Poisson systems in \\(\\mathbb {R}^{2}\\)","authors":"Guofeng Che,&nbsp;Juntao Sun,&nbsp;Tsung-Fang Wu","doi":"10.1007/s10231-024-01470-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the fractional Schrödinger–Poisson system with a general nonlinearity as follows: </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} (-\\Delta )^{s}u+u+ l(x)\\phi u=f(u) &amp;{} \\text { in }\\mathbb {R}^{2}, \\\\ (-\\Delta )^{t}\\phi =l(x)u^{2} &amp;{} \\text { in }\\mathbb {R}^{2}, \\end{array} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(\\frac{1}{2}&lt;t\\le s&lt;1\\)</span>, the potential <span>\\(l\\in C(\\mathbb {R}^{2},\\mathbb {R}^{+})\\)</span> and <span>\\(f\\in C(\\mathbb {R},\\mathbb {R})\\)</span> does not require the classical (AR)-condition. When <span>\\(l(x)\\equiv \\mu &gt;0\\)</span> is a parameter, by establishing new estimates for the fractional Laplacian, we find two positive solutions, depending on the range of <span>\\(\\mu \\)</span>. As a result, a positive ground state solution with negative energy exists for the non-autonomous system without any symmetry on <i>l</i>(<i>x</i>). When <i>l</i>(<i>x</i>) is radially symmetric, we show that the symmetry breaking phenomenon can occur, and that a non-radial ground state solution with negative energy exists. Furthermore, under additional assumptions on <i>l</i>(<i>x</i>), three positive solutions are found. The intrinsic differences between the planar SP system and the planar fSP system are analyzed.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01470-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the fractional Schrödinger–Poisson system with a general nonlinearity as follows:

$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}u+u+ l(x)\phi u=f(u) &{} \text { in }\mathbb {R}^{2}, \\ (-\Delta )^{t}\phi =l(x)u^{2} &{} \text { in }\mathbb {R}^{2}, \end{array} \right. \end{aligned}$$

where \(\frac{1}{2}<t\le s<1\), the potential \(l\in C(\mathbb {R}^{2},\mathbb {R}^{+})\) and \(f\in C(\mathbb {R},\mathbb {R})\) does not require the classical (AR)-condition. When \(l(x)\equiv \mu >0\) is a parameter, by establishing new estimates for the fractional Laplacian, we find two positive solutions, depending on the range of \(\mu \). As a result, a positive ground state solution with negative energy exists for the non-autonomous system without any symmetry on l(x). When l(x) is radially symmetric, we show that the symmetry breaking phenomenon can occur, and that a non-radial ground state solution with negative energy exists. Furthermore, under additional assumptions on l(x), three positive solutions are found. The intrinsic differences between the planar SP system and the planar fSP system are analyzed.

Abstract Image

分数薛定谔-泊松系统在 $$\mathbb {R}^{2}$ 中的非径向基态解
本文研究了具有一般非线性的分数薛定谔-泊松系统:$$\begin{aligned}\(-\Delta )^{s}u+u+ l(x)\phi u=f(u) &{}\(-\Delta )^{t}\phi =l(x)u^{2} &{}\context { in }\mathbb {R}^{2},\end{array}\right.\end{aligned}$$其中(frac{1}{2}<t\le s<1\),势(l\in C(\mathbb {R}^{2},\mathbb {R}^{+}))和(f\in C(\mathbb {R},\mathbb {R}))不需要经典的(AR)条件。当\(l(x)equiv \mu >0\)是一个参数时,通过建立对分数拉普拉奇的新估计,我们找到了两个正解,这取决于\(\mu \)的范围。因此,对于不对称于 l(x) 的非自治系统,存在一个能量为负的正基态解。当 l(x) 径向对称时,我们证明了对称性破缺现象可能发生,并且存在一个具有负能量的非径向基态解。此外,在 l(x) 的额外假设下,我们还发现了三个正解。分析了平面 SP 系统与平面 fSP 系统的内在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信