{"title":"Tuning sensitivity of bimetallic, MXene and graphene-based SPR biosensors for rapid malaria detection: a numerical approach","authors":"Bhishma Karki, Arun Uniyal, Manoj Sharma, Ram Bharos Yadav, Parusharamulu Buduma","doi":"10.1007/s10825-024-02191-4","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of surface plasmon resonance (SPR) biosensors to detect different biomolecules quickly and sensitively has attracted much attention. In this work, we use a numerical method to identify malaria phases by exploring the sensitivity adjustment of SPR sensors based on bimetallic, MXene and graphene layers. Effective treatment for malaria, a potentially fatal disease brought on by plasmodium parasites, depends on early identification. Innovative biosensing technologies are necessary since traditional diagnostic procedures frequently lack sensitivity and speed. The transfer matrix method is employed here in this study for reflectance calculation. The COMSOL software finds the electric field distribution across the various layers interfaces. The maximum sensitivity of 301.1667°/RIU has been attained for the proposed work.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 4","pages":"920 - 929"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02191-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of surface plasmon resonance (SPR) biosensors to detect different biomolecules quickly and sensitively has attracted much attention. In this work, we use a numerical method to identify malaria phases by exploring the sensitivity adjustment of SPR sensors based on bimetallic, MXene and graphene layers. Effective treatment for malaria, a potentially fatal disease brought on by plasmodium parasites, depends on early identification. Innovative biosensing technologies are necessary since traditional diagnostic procedures frequently lack sensitivity and speed. The transfer matrix method is employed here in this study for reflectance calculation. The COMSOL software finds the electric field distribution across the various layers interfaces. The maximum sensitivity of 301.1667°/RIU has been attained for the proposed work.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.