Evaluation of tribological performance in contact pairs by implementing the biomimetic surface textures with lubricant flow using CFD techniques

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Madaparthi Abhilash, Penchaliah Ramkumar, Sankaranarayanan Vengadesan
{"title":"Evaluation of tribological performance in contact pairs by implementing the biomimetic surface textures with lubricant flow using CFD techniques","authors":"Madaparthi Abhilash, Penchaliah Ramkumar, Sankaranarayanan Vengadesan","doi":"10.1108/ilt-02-2024-0053","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to investigate the tribological benefits of a biomimetic teardrop surface texture inspired by snakeskin compared to conventional surface textures with the help of geometrical and flow parameters using computational fluid dynamics techniques.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The lubricant is assumed to be Newtonian, and the flow is laminar with constant viscosity and isothermal property. The governing equations, continuity and Navier–Stokes equation, are discretised by the finite volume method, and cavitation modelling is included. The discretisation for the momentum equations is carried out using the second-order difference method for the SIMPLEC algorithm of pressure–velocity coupling.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results indicate that biomimetic teardrop surface texturing performs better than conventional shapes surface textures in improving tribological performance. Furthermore, the parallel texture orientation along with the flow generates a high-pressure distribution relative to other orientations. Surface texture area density also highly influences the load-carrying capacity, which is optimum at 29%. Zigzag pattern arrangement performs better compared to linear pattern arrangement of texturing.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The paper proposes that this unique biomimetic teardrop shape can give better tribological performance than conventional shapes.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0053/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"40 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-02-2024-0053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This paper aims to investigate the tribological benefits of a biomimetic teardrop surface texture inspired by snakeskin compared to conventional surface textures with the help of geometrical and flow parameters using computational fluid dynamics techniques.

Design/methodology/approach

The lubricant is assumed to be Newtonian, and the flow is laminar with constant viscosity and isothermal property. The governing equations, continuity and Navier–Stokes equation, are discretised by the finite volume method, and cavitation modelling is included. The discretisation for the momentum equations is carried out using the second-order difference method for the SIMPLEC algorithm of pressure–velocity coupling.

Findings

The results indicate that biomimetic teardrop surface texturing performs better than conventional shapes surface textures in improving tribological performance. Furthermore, the parallel texture orientation along with the flow generates a high-pressure distribution relative to other orientations. Surface texture area density also highly influences the load-carrying capacity, which is optimum at 29%. Zigzag pattern arrangement performs better compared to linear pattern arrangement of texturing.

Originality/value

The paper proposes that this unique biomimetic teardrop shape can give better tribological performance than conventional shapes.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0053/

利用 CFD 技术,通过仿生表面纹理与润滑剂流动,评估接触对的摩擦学性能
目的 本文旨在利用计算流体动力学技术,借助几何和流动参数,研究受蛇皮启发的仿生物水滴表面纹理与传统表面纹理相比所具有的摩擦学优势。控制方程(连续性方程和纳维-斯托克斯方程)采用有限体积法离散化,并包含气蚀模型。结果表明,仿生物水滴表面纹理在改善摩擦学性能方面的表现优于传统形状的表面纹理。此外,与其他方向的纹理相比,平行的纹理方向会产生较高的压力分布。表面纹理面积密度对承载能力也有很大影响,最佳承载能力为 29%。与线性纹理排列相比,人字形纹理排列具有更好的性能。原创性/价值本文提出,与传统形状相比,这种独特的仿生物水滴形状可以提供更好的摩擦学性能。同行评审本文的同行评审历史可在以下网站查阅:https://publons.com/publon/10.1108/ILT-02-2024-0053/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Lubrication and Tribology
Industrial Lubrication and Tribology 工程技术-工程:机械
CiteScore
3.00
自引率
18.80%
发文量
129
审稿时长
1.9 months
期刊介绍: Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信