{"title":"All-photonic artificial synapses based on photochromic perovskites for noncontact neuromorphic visual perception","authors":"Xing Zhou, Fangzhen Hu, Qing Hou, Jinming Hu, Yimeng Wang, Xi Chen","doi":"10.1038/s43246-024-00553-w","DOIUrl":null,"url":null,"abstract":"Recently optoelectronic synapses generating light-driven electrical memories have played a vital role in the neuromorphic computing of visual perception. However, all the optoelectronic synapses demonstrate photoelectric conversion. Peripheral circuits are used for contact photocurrent measurement, leading to significant energy consumption and impeding the evolution of optical wireless communication. It is crucial to develop noncontact neuromorphic visual perception based on light-driven photonic memories. Herein, we report all-photonic artificial synapses based on photochromic perovskites. Triggered by ultraviolet and visible light pulses, cesium lead iodide bromine induces a structural disorder. Optical transmittance changes induced by the disorder last after the pulses are gone. Next, the photonic memories are propagated in the air and processed by a recurrent neural network. The accuracy of binary image recognition is instantly stabilized at 1.0, and accuracy above 0.8 after 7 epochs is achieved in the recognition of digitals from 0 to 9. The all-photonic synapses realize remote perception with zero in-situ energy consumption and enable artificial sensory systems with low-power computation, remote control, and ultrahigh propagation speed. Optoelectronic synapses are key to artificial visual perception systems based on neuromorphic computing, but they typically rely on photoelectric conversion and peripheral circuits that are energy consuming and prevent optical wireless communication. Here, all-photonic artificial synapses with light-driven optical transmittance memories are fabricated based on photochromic CsPbIBr2 perovskite thin films.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00553-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00553-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently optoelectronic synapses generating light-driven electrical memories have played a vital role in the neuromorphic computing of visual perception. However, all the optoelectronic synapses demonstrate photoelectric conversion. Peripheral circuits are used for contact photocurrent measurement, leading to significant energy consumption and impeding the evolution of optical wireless communication. It is crucial to develop noncontact neuromorphic visual perception based on light-driven photonic memories. Herein, we report all-photonic artificial synapses based on photochromic perovskites. Triggered by ultraviolet and visible light pulses, cesium lead iodide bromine induces a structural disorder. Optical transmittance changes induced by the disorder last after the pulses are gone. Next, the photonic memories are propagated in the air and processed by a recurrent neural network. The accuracy of binary image recognition is instantly stabilized at 1.0, and accuracy above 0.8 after 7 epochs is achieved in the recognition of digitals from 0 to 9. The all-photonic synapses realize remote perception with zero in-situ energy consumption and enable artificial sensory systems with low-power computation, remote control, and ultrahigh propagation speed. Optoelectronic synapses are key to artificial visual perception systems based on neuromorphic computing, but they typically rely on photoelectric conversion and peripheral circuits that are energy consuming and prevent optical wireless communication. Here, all-photonic artificial synapses with light-driven optical transmittance memories are fabricated based on photochromic CsPbIBr2 perovskite thin films.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.