{"title":"The Software System of a Dedicated Brain PET Scanner Using Dual-Ended Readout Detectors With High-DOI Resolution","authors":"Jiamin Liu;Ning Ren;Tianyi Zeng;Zhonghua Kuang;Qiyang Zhang;Xiaohui Wang;Zheng Liu;Hairong Zheng;Dong Liang;Yongfeng Yang;Zhanli Hu","doi":"10.1109/TRPMS.2024.3370308","DOIUrl":null,"url":null,"abstract":"A dedicated brain positron emission tomography (PET) scanner can achieve higher-spatial resolution, sensitivity, and cost-effectiveness than whole-body PET scanners. In this study, we present the software system for a dedicated brain PET scanner, encompassing data acquisition, detector calibration, sinogram generation, imaging reconstruction, and data correction. The dedicated brain PET scanner features 224 depth-encoding detectors, each with a depth of interaction (DOI) resolution of approximately 2 mm. The electronics and data acquisition system of the scanner can be configured in different modes for detector calibration or image acquisition. Procedures for obtaining detector calibration parameters, including crystal look-up tables (LUTs), crystal depth-of-interaction LUTs, crystal energy, and timing calibration parameters, were developed. A novel virtual crystal-based sinogram generation method was developed to reduce sinogram size while preserving positioning accuracy. We also introduced a graphics processing unit-accelerated ordered subset expectation maximization imaging reconstruction method. The spatial resolution of the scanner was assessed using a point source at both the center and 1/4 axial field of view with varying radial offsets. We measured singles and prompt count rates at different activities using a monkey-sized phantom. Furthermore, we conducted scans on a 3-D Hoffman brain phantom and a rabbit, demonstrated the imaging capabilities of the PET scanner.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10445500/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
A dedicated brain positron emission tomography (PET) scanner can achieve higher-spatial resolution, sensitivity, and cost-effectiveness than whole-body PET scanners. In this study, we present the software system for a dedicated brain PET scanner, encompassing data acquisition, detector calibration, sinogram generation, imaging reconstruction, and data correction. The dedicated brain PET scanner features 224 depth-encoding detectors, each with a depth of interaction (DOI) resolution of approximately 2 mm. The electronics and data acquisition system of the scanner can be configured in different modes for detector calibration or image acquisition. Procedures for obtaining detector calibration parameters, including crystal look-up tables (LUTs), crystal depth-of-interaction LUTs, crystal energy, and timing calibration parameters, were developed. A novel virtual crystal-based sinogram generation method was developed to reduce sinogram size while preserving positioning accuracy. We also introduced a graphics processing unit-accelerated ordered subset expectation maximization imaging reconstruction method. The spatial resolution of the scanner was assessed using a point source at both the center and 1/4 axial field of view with varying radial offsets. We measured singles and prompt count rates at different activities using a monkey-sized phantom. Furthermore, we conducted scans on a 3-D Hoffman brain phantom and a rabbit, demonstrated the imaging capabilities of the PET scanner.