Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hao Sun;Yu Du;Ching-Ni Lin;Han Jiang;Wenbo Huang;Pai-Yi Chiu;Guang-Uei Hung;Lijun Lu;Greta S. P. Mok
{"title":"Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT","authors":"Hao Sun;Yu Du;Ching-Ni Lin;Han Jiang;Wenbo Huang;Pai-Yi Chiu;Guang-Uei Hung;Lijun Lu;Greta S. P. Mok","doi":"10.1109/TRPMS.2024.3374207","DOIUrl":null,"url":null,"abstract":"This study aims to investigate robust attenuation correction (AC) by generating attenuation maps \n<inline-formula> <tex-math>$(\\mu $ </tex-math></inline-formula>\n-maps) from nonattenuation-corrected (NAC) brain SPECT data using transfer learning (TL). Four sets of brain SPECT data (\n<inline-formula> <tex-math>$4\\times 30$ </tex-math></inline-formula>\n) were retrospectively collected: S-TRODAT-1, S-ECD, G-TRODAT-1, and G-ECD. A 3-D attention-based conditional generative adversarial network was pretrained using 22 paired 3-D NAC SPECT images and corresponding CT \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-maps for four patient groups. Various numbers (\n<inline-formula> <tex-math>$n\\,\\,=$ </tex-math></inline-formula>\n 4–22) of paired NAC SPECT and corresponding \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-maps from S-TRODAT-1 were then used to fine-tune (FT) the other three pretrained deep learning (DL) networks, i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in S-TRODAT-1 group were tested on their own network (DL-AC), and on the pretrained models with FT (FT-AC) and without FT (NFT-AC). The FT-AC methods used 22 (FT22), 12 (FT12), 8 (FT8), and 4 (FT4) paired data for FT, respectively. Our results show that FT22 and FT12 could outperform DL-AC for cross-tracer S-ECD and cross-scanner G-TRODAT-1 using CT-based AC (CT-AC) as the reference. FT22 also outperforms DL-AC for cross-tracer+cross-scanner G-ECD. FT8 performs comparably to DL-AC, while FT4 is worse than DL-AC but still better than NAC and NFT-AC in each group. Attenuation map generation is feasible for brain SPECT based on cross-tracer and/or cross-scanner FT-AC using a smaller number of patient data. The FT-AC performance improves as the number of data used for FT increases.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"664-676"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10461117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10461117/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate robust attenuation correction (AC) by generating attenuation maps $(\mu $ -maps) from nonattenuation-corrected (NAC) brain SPECT data using transfer learning (TL). Four sets of brain SPECT data ( $4\times 30$ ) were retrospectively collected: S-TRODAT-1, S-ECD, G-TRODAT-1, and G-ECD. A 3-D attention-based conditional generative adversarial network was pretrained using 22 paired 3-D NAC SPECT images and corresponding CT $\mu $ -maps for four patient groups. Various numbers ( $n\,\,=$ 4–22) of paired NAC SPECT and corresponding $\mu $ -maps from S-TRODAT-1 were then used to fine-tune (FT) the other three pretrained deep learning (DL) networks, i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in S-TRODAT-1 group were tested on their own network (DL-AC), and on the pretrained models with FT (FT-AC) and without FT (NFT-AC). The FT-AC methods used 22 (FT22), 12 (FT12), 8 (FT8), and 4 (FT4) paired data for FT, respectively. Our results show that FT22 and FT12 could outperform DL-AC for cross-tracer S-ECD and cross-scanner G-TRODAT-1 using CT-based AC (CT-AC) as the reference. FT22 also outperforms DL-AC for cross-tracer+cross-scanner G-ECD. FT8 performs comparably to DL-AC, while FT4 is worse than DL-AC but still better than NAC and NFT-AC in each group. Attenuation map generation is feasible for brain SPECT based on cross-tracer and/or cross-scanner FT-AC using a smaller number of patient data. The FT-AC performance improves as the number of data used for FT increases.
基于跨示踪器和跨扫描仪转移学习的脑 SPECT 衰减校正
本研究旨在利用迁移学习(TL)从非衰减校正(NAC)脑SPECT数据生成衰减图(\mu $ -maps),从而研究稳健衰减校正(AC)。我们回顾性地收集了四组脑SPECT数据(4\times 30$):S-TRODAT-1、S-ECD、G-TRODAT-1 和 G-ECD。使用四组患者的22个成对三维NAC SPECT图像和相应的CT $\mu $ -地图,对基于三维注意力的条件生成对抗网络进行了预训练。然后使用S-TRODAT-1中不同数量($n\\,=$ 4-22)的配对NAC SPECT和相应的$\mu $ -maps来微调(FT)其他三个预训练的深度学习(DL)网络,即S-ECD、G-TRODAT-1和G-ECD。S-TRODAT-1组的所有患者都在自己的网络(DL-AC)上进行了测试,并在有FT(FT-AC)和无FT(NFT-AC)的预训练模型上进行了测试。FT-AC 方法分别使用了 22(FT22)、12(FT12)、8(FT8)和 4(FT4)个配对数据进行 FT。结果表明,在交叉示踪 S-ECD 和交叉扫描仪 G-TRODAT-1 中,以基于 CT 的交流(CT-AC)为参考,FT22 和 FT12 的效果优于 DL-AC。在交叉示踪+交叉扫描 G-ECD 方面,FT22 也优于 DL-AC。FT8 的表现与 DL-AC 相当,而 FT4 则不如 DL-AC,但在每组中仍优于 NAC 和 NFT-AC。基于跨示踪剂和/或跨扫描仪 FT-AC 的脑 SPECT 可使用较少的患者数据生成衰减图。随着用于 FT 的数据数量增加,FT-AC 性能也会提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信