{"title":"Unpaired fundus image enhancement based on constrained generative adversarial networks","authors":"Luyao Yang, Shenglan Yao, Pengyu Chen, Mei Shen, Suzhong Fu, Jiwei Xing, Yuxin Xue, Xin Chen, Xiaofei Wen, Yang Zhao, Wei Li, Heng Ma, Shiying Li, Valery V. Tuchin, Qingliang Zhao","doi":"10.1002/jbio.202400168","DOIUrl":null,"url":null,"abstract":"<p>Fundus photography (FP) is a crucial technique for diagnosing the progression of ocular and systemic diseases in clinical studies, with wide applications in early clinical screening and diagnosis. However, due to the nonuniform illumination and imbalanced intensity caused by various reasons, the quality of fundus images is often severely weakened, brings challenges for automated screening, analysis, and diagnosis of diseases. To resolve this problem, we developed strongly constrained generative adversarial networks (SCGAN). The results demonstrate that the quality of various datasets were more significantly enhanced based on SCGAN, simultaneously more effectively retaining tissue and vascular information under various experimental conditions. Furthermore, the clinical effectiveness and robustness of this model were validated by showing its improved ability in vascular segmentation as well as disease diagnosis. Our study provides a new comprehensive approach for FP and also possesses the potential capacity to advance artificial intelligence-assisted ophthalmic examination.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400168","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Fundus photography (FP) is a crucial technique for diagnosing the progression of ocular and systemic diseases in clinical studies, with wide applications in early clinical screening and diagnosis. However, due to the nonuniform illumination and imbalanced intensity caused by various reasons, the quality of fundus images is often severely weakened, brings challenges for automated screening, analysis, and diagnosis of diseases. To resolve this problem, we developed strongly constrained generative adversarial networks (SCGAN). The results demonstrate that the quality of various datasets were more significantly enhanced based on SCGAN, simultaneously more effectively retaining tissue and vascular information under various experimental conditions. Furthermore, the clinical effectiveness and robustness of this model were validated by showing its improved ability in vascular segmentation as well as disease diagnosis. Our study provides a new comprehensive approach for FP and also possesses the potential capacity to advance artificial intelligence-assisted ophthalmic examination.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.