Ting Xia, Parisa Torkinejad-Ziarati, Simon Kudernatsch, Donald R Peterson
{"title":"The effects of exoskeleton use on human response to simulated overhead tasks with vibration.","authors":"Ting Xia, Parisa Torkinejad-Ziarati, Simon Kudernatsch, Donald R Peterson","doi":"10.1080/00140139.2024.2372003","DOIUrl":null,"url":null,"abstract":"<p><p>The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2372003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.