Caroline Fernanda Sanches Dal Pozzo, Jose Eduardo Maldonado Junior, José Britto-Júnior, João Felipe Agostini Badin, Valéria Barbosa de Souza, André Almeida Schenka, Larryn W Peterson, Adriano Fregonesi, Edson Antunes, Gilberto De Nucci
{"title":"Basal release of 6-cyanodopamine from rat isolated vas deferens and its role on the tissue contractility.","authors":"Caroline Fernanda Sanches Dal Pozzo, Jose Eduardo Maldonado Junior, José Britto-Júnior, João Felipe Agostini Badin, Valéria Barbosa de Souza, André Almeida Schenka, Larryn W Peterson, Adriano Fregonesi, Edson Antunes, Gilberto De Nucci","doi":"10.1007/s00424-024-02985-2","DOIUrl":null,"url":null,"abstract":"<p><p>6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"1263-1277"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02985-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.