{"title":"dMAD7 is a promising tool for targeted gene regulation in the methylotrophic yeast Komagataella phaffii","authors":"","doi":"10.1016/j.nbt.2024.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>The methylotrophic yeast <em>Komagataella phaffii</em> is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant “dead” MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in <em>K. phaffii</em> to regulate the expression of the enhanced green fluorescent protein (<em>eGFP</em>). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of <em>eGFP</em> in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in <em>K. phaffii</em> through successfully regulating <em>eGFP</em> expression.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"83 ","pages":"Pages 110-120"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1871678424000293/pdfft?md5=ab5bf7c1b8723321dd1b9a85decd9d81&pid=1-s2.0-S1871678424000293-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678424000293","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant “dead” MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.