Jing Cui, Yan Zhang, Wenhong Zhang, Dongtao Li, Zhibo Hong, Li Zhao, Jiachen Sun, Yu Chen, Ningkun Zhang
{"title":"Research Hotspots and Development Trends on Apolipoprotein B in the Field of Atherosclerosis: A Bibliometric Analysis.","authors":"Jing Cui, Yan Zhang, Wenhong Zhang, Dongtao Li, Zhibo Hong, Li Zhao, Jiachen Sun, Yu Chen, Ningkun Zhang","doi":"10.1007/s12033-024-01218-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases caused by atherosclerosis (AS) are the leading causes of disability and death worldwide. Apolipoprotein B (ApoB), the core protein of low-density lipoproteins, is a major contributor to cardiovascular disease-related morbidity and mortality, with apolipoprotein B (ApoB) playing a critical role in its pathogenesis. However, no bibliometric studies on the involvement of ApoB in AS have been published. This study aimed to conduct a comprehensive bibliometric analysis to explore the current and future trends regarding the role of ApoB in AS.</p><p><strong>Methods: </strong>Utilizing the Web of Science Core Collection, a thorough search was conducted for ApoB in AS-related papers related to research on ApoB in the field of AS during 1991-2023. The analysis focused on annual publication trends, leading countries/regions and institutions, influential authors, journal and key journals. CiteSpace and VOSviewer were employed to visualize reference co-citations, and keyword co-occurrences, offering insights into the research landscape and emerging trends.</p><p><strong>Results: </strong>This bibliometric analysis employed network diagrams for cluster analysis of a total of 2105 articles and reviews, evidencing a discernible upward trend in annual publication volume. This corpus of research emanates from 76 countries/regions and 2343 organizations, illustrating the widespread international engagement in ApoB-related AS studies. Notably, the United States and the University of California emerge as the most prolific contributors, which underscores their pivotal roles in advancing this research domain. The thematic investigation has increasingly focused on elucidating the mechanistic involvement of ApoB in atherosclerosis, its potential as a diagnostic biomarker, and its implications for therapeutic strategies.</p><p><strong>Conclusion: </strong>This bibliometric analysis provides the first comprehensive perspective on the evolving promise of ApoB in AS-related research, emphasizing the importance of this molecule in opening up new diagnostic and therapeutic avenues. This study emphasizes the need for continued research and interdisciplinary efforts to strengthen the fight against AS. Furthermore, it emphasizes the critical role of international collaboration and interdisciplinary exploration in leveraging new insights to achieve clinical breakthroughs, thereby addressing the complexities of AS by focusing on ApoB.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2204-2222"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01218-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiovascular diseases caused by atherosclerosis (AS) are the leading causes of disability and death worldwide. Apolipoprotein B (ApoB), the core protein of low-density lipoproteins, is a major contributor to cardiovascular disease-related morbidity and mortality, with apolipoprotein B (ApoB) playing a critical role in its pathogenesis. However, no bibliometric studies on the involvement of ApoB in AS have been published. This study aimed to conduct a comprehensive bibliometric analysis to explore the current and future trends regarding the role of ApoB in AS.
Methods: Utilizing the Web of Science Core Collection, a thorough search was conducted for ApoB in AS-related papers related to research on ApoB in the field of AS during 1991-2023. The analysis focused on annual publication trends, leading countries/regions and institutions, influential authors, journal and key journals. CiteSpace and VOSviewer were employed to visualize reference co-citations, and keyword co-occurrences, offering insights into the research landscape and emerging trends.
Results: This bibliometric analysis employed network diagrams for cluster analysis of a total of 2105 articles and reviews, evidencing a discernible upward trend in annual publication volume. This corpus of research emanates from 76 countries/regions and 2343 organizations, illustrating the widespread international engagement in ApoB-related AS studies. Notably, the United States and the University of California emerge as the most prolific contributors, which underscores their pivotal roles in advancing this research domain. The thematic investigation has increasingly focused on elucidating the mechanistic involvement of ApoB in atherosclerosis, its potential as a diagnostic biomarker, and its implications for therapeutic strategies.
Conclusion: This bibliometric analysis provides the first comprehensive perspective on the evolving promise of ApoB in AS-related research, emphasizing the importance of this molecule in opening up new diagnostic and therapeutic avenues. This study emphasizes the need for continued research and interdisciplinary efforts to strengthen the fight against AS. Furthermore, it emphasizes the critical role of international collaboration and interdisciplinary exploration in leveraging new insights to achieve clinical breakthroughs, thereby addressing the complexities of AS by focusing on ApoB.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.