PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging.

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Lingqi Xie, Yalun Cheng, Biao Hu, Xin Chen, Yuze An, Zhuying Xia, Guangping Cai, Changjun Li, Hui Peng
{"title":"PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging.","authors":"Lingqi Xie, Yalun Cheng, Biao Hu, Xin Chen, Yuze An, Zhuying Xia, Guangping Cai, Changjun Li, Hui Peng","doi":"10.1038/s41413-024-00337-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"38"},"PeriodicalIF":14.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00337-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.

Abstract Image

PCLAF 可诱导骨髓脂肪细胞衰老并导致骨骼老化。
骨髓脂肪细胞(BMAds)会影响骨平衡,但其机制仍不清楚。在这里,我们发现运动可抑制骨髓巨噬细胞中 PCNA 箝位相关因子(PCLAF)的分泌,从而抑制骨髓脂肪细胞的衰老,进而缓解骨骼衰老。巨噬细胞中 PCLAF 的基因缺失抑制了 BMAds 的衰老,延缓了骨骼的衰老。相反,将 PCLAF 介导的衰老 BMAds 移植到健康小鼠的骨髓中则会抑制骨转换。从机理上讲,PCLAF与ADGRL2受体结合抑制了AKT/mTOR信号传导,而AKT/mTOR信号传导引发了BMAds衰老,并随后在成骨细胞和破骨细胞中扩散衰老。值得注意的是,我们开发了一种 PCLAF 中和抗体,并显示了它对老年小鼠骨骼健康的治疗效果。这些发现共同确定了 PCLAF 是 BMAds 衰老的诱导因子,并为治疗与年龄相关的骨质疏松症提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信