Ablation mechanism of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composite during plasma ablation above 2000 °C

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Feiyan Cai, Dewei Ni, Zhengyang Zhou, Bowen Chen, Xuegang Zou, Le Gao, Ping He, Yusheng Ding, Xiangyu Zhang, Shaoming Dong
{"title":"Ablation mechanism of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composite during plasma ablation above 2000 °C","authors":"Feiyan Cai, Dewei Ni, Zhengyang Zhou, Bowen Chen, Xuegang Zou, Le Gao, Ping He, Yusheng Ding, Xiangyu Zhang, Shaoming Dong","doi":"10.1016/j.jmst.2024.06.031","DOIUrl":null,"url":null,"abstract":"<p>Air plasma ablation behavior of C<sub>f</sub>/(Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)C-SiC composite was studied systematically with the surface temperature above 2000 °C at the ablation center. It presents a linear recession rate of 0.15 μm/s and a mass recession rate of 2.05 mg/s after ablation at 4 MW/m<sup>2</sup> (2000°C) for 300 s. Associated with the temperature gradient of the ablation surface, the oxidation products at different locations mainly consist of (TiZrHfNbTa)O<em><sub>x</sub></em>, (Zr<em><sub>x</sub></em>Hf<sub>1–</sub><em><sub>x</sub></em>)<sub>6</sub>(Nb<sub>y</sub>Ta<sub>1–</sub><em><sub>y</sub></em>)<sub>2</sub>O<sub>17</sub>, Ti(Nb<em><sub>x</sub></em>Ta<sub>1–</sub><em><sub>x</sub></em>)<sub>2</sub>O<sub>7</sub>, (Hf<em><sub>x</sub></em>Zr<sub>1–</sub><em><sub>x</sub></em>)SiO<sub>4</sub>, and SiO<sub>2</sub>. Due to the synergistic effect of the multi-component oxides, oxidation products form a protective structure composed of high melting point oxide skeleton filled with relatively low melting point phases. It retards oxygen inward diffusion and prevents the composite fragmentation caused by plasma mechanical scouring. It is believed that the results would be helpful for further improving the ablation resistance by component design of high entropy ceramics and their composites.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"81 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.06.031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Air plasma ablation behavior of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composite was studied systematically with the surface temperature above 2000 °C at the ablation center. It presents a linear recession rate of 0.15 μm/s and a mass recession rate of 2.05 mg/s after ablation at 4 MW/m2 (2000°C) for 300 s. Associated with the temperature gradient of the ablation surface, the oxidation products at different locations mainly consist of (TiZrHfNbTa)Ox, (ZrxHf1–x)6(NbyTa1–y)2O17, Ti(NbxTa1–x)2O7, (HfxZr1–x)SiO4, and SiO2. Due to the synergistic effect of the multi-component oxides, oxidation products form a protective structure composed of high melting point oxide skeleton filled with relatively low melting point phases. It retards oxygen inward diffusion and prevents the composite fragmentation caused by plasma mechanical scouring. It is believed that the results would be helpful for further improving the ablation resistance by component design of high entropy ceramics and their composites.

Abstract Image

Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC 复合材料在 2000 ℃ 以上等离子体烧蚀过程中的烧蚀机理
在烧蚀中心表面温度高于 2000°C 的条件下,对 Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC 复合材料的空气等离子体烧蚀行为进行了系统研究。在 4 MW/m2 (2000°C) 下烧蚀 300 秒后,其线性衰退率为 0.15 μm/s,质量衰退率为 2.05 mg/s。与烧蚀表面的温度梯度有关,不同位置的氧化产物主要包括 (TiZrHfNbTa)Ox、(ZrxHf1-x)6(NbyTa1-y)2O17、Ti(NbxTa1-x)2O7、(HfxZr1-x)SiO4 和 SiO2。由于多组分氧化物的协同作用,氧化产物形成了由高熔点氧化物骨架和相对低熔点相填充组成的保护结构。它能阻止氧气向内扩散,防止等离子体机械冲刷造成的复合材料破碎。相信这些结果将有助于通过高熵陶瓷及其复合材料的部件设计进一步提高抗烧蚀性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信