{"title":"Enhanced content-based fashion recommendation system through deep ensemble classifier with transfer learning","authors":"Buradagunta Suvarna, Sivadi Balakrishna","doi":"10.1186/s40691-024-00382-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the rise of online shopping due to the COVID-19 pandemic, Recommender Systems have become increasingly important in providing personalized product recommendations. Recommender Systems face the challenge of efficiently extracting relevant items from vast data. Numerous methods using deep learning approaches have been developed to classify fashion images. However, those models are based on a single model that may or may not be reliable. We proposed a deep ensemble classifier that takes the probabilities obtained from five pre-trained models such as MobileNet, DenseNet, Xception, and the two varieties of VGG. The probabilities obtained from the five pre-trained models are then passed as inputs to a deep ensemble classifier for the prediction of the given item. Several similarity measures have been studied in this work and the cosine similarity metric is used to recommend the products for a classified product given by a deep ensemble classifier. The proposed method is trained and validated using benchmark datasets such as Fashion product images dataset and Shoe dataset, demonstrating superior accuracy compared to existing models. The results highlight the potential of leveraging transfer learning and deep ensemble techniques to enhance fashion recommendation systems. The proposed model achieves 96% accuracy compared to the existing models.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-024-00382-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-024-00382-y","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise of online shopping due to the COVID-19 pandemic, Recommender Systems have become increasingly important in providing personalized product recommendations. Recommender Systems face the challenge of efficiently extracting relevant items from vast data. Numerous methods using deep learning approaches have been developed to classify fashion images. However, those models are based on a single model that may or may not be reliable. We proposed a deep ensemble classifier that takes the probabilities obtained from five pre-trained models such as MobileNet, DenseNet, Xception, and the two varieties of VGG. The probabilities obtained from the five pre-trained models are then passed as inputs to a deep ensemble classifier for the prediction of the given item. Several similarity measures have been studied in this work and the cosine similarity metric is used to recommend the products for a classified product given by a deep ensemble classifier. The proposed method is trained and validated using benchmark datasets such as Fashion product images dataset and Shoe dataset, demonstrating superior accuracy compared to existing models. The results highlight the potential of leveraging transfer learning and deep ensemble techniques to enhance fashion recommendation systems. The proposed model achieves 96% accuracy compared to the existing models.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.