Amphiphilic block and random copolymers: aggregation and hydrophobic modification on metal-free tanned collagen fibers

Yudan Yi, Xinxin Fan, Qijun Li, Ya-nan Wang
{"title":"Amphiphilic block and random copolymers: aggregation and hydrophobic modification on metal-free tanned collagen fibers","authors":"Yudan Yi,&nbsp;Xinxin Fan,&nbsp;Qijun Li,&nbsp;Ya-nan Wang","doi":"10.1186/s42825-024-00163-9","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrophobicity enhancement of metal-free leather, which is crucial for improving its comprehensive performance, can be achieved by using amphiphilic copolymer retanning agents. However, the relationship between the sequential structure and the hydrophobic modification effect of amphiphilic copolymers remains unclear. Herein, an amphiphilic block copolymer was synthesized using stearyl methacrylate and 2-(dimethylamino)ethyl methacrylate via atom transfer radical polymerization, and the corresponding random copolymer with similar monomer compositions and molecular weights was prepared for comparison. The aggregation behavior of block and random copolymers was investigated. DLS and TEM results indicate that the block copolymer exhibits a larger aggregate size than the corresponding random copolymer. Molecular dynamics simulations suggest that the block copolymer aggregate exhibit a thicker hydrophilic shell and more concentrated distribution of cationic DMA block than the random copolymer aggregate. Subsequently, the block and random copolymers were used for the hydrophobic modification of metal-free tanned collagen fibers (CFs). The block copolymer shows superior binding capacity to CFs than the random one because of its larger size and more concentrated charge distribution. Hence, the block copolymer can form a dense and uniform hydrophobic film on the surface of collagen fibrils and endow CFs with higher hydrophobicity than the random one. This work provides theoretical guidance for modulating the hydrophobicity of CFs by tailoring the sequential structure of amphiphilic copolymers, which is expected to inspire the manufacturing of high-performance metal-free leather.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00163-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-024-00163-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrophobicity enhancement of metal-free leather, which is crucial for improving its comprehensive performance, can be achieved by using amphiphilic copolymer retanning agents. However, the relationship between the sequential structure and the hydrophobic modification effect of amphiphilic copolymers remains unclear. Herein, an amphiphilic block copolymer was synthesized using stearyl methacrylate and 2-(dimethylamino)ethyl methacrylate via atom transfer radical polymerization, and the corresponding random copolymer with similar monomer compositions and molecular weights was prepared for comparison. The aggregation behavior of block and random copolymers was investigated. DLS and TEM results indicate that the block copolymer exhibits a larger aggregate size than the corresponding random copolymer. Molecular dynamics simulations suggest that the block copolymer aggregate exhibit a thicker hydrophilic shell and more concentrated distribution of cationic DMA block than the random copolymer aggregate. Subsequently, the block and random copolymers were used for the hydrophobic modification of metal-free tanned collagen fibers (CFs). The block copolymer shows superior binding capacity to CFs than the random one because of its larger size and more concentrated charge distribution. Hence, the block copolymer can form a dense and uniform hydrophobic film on the surface of collagen fibrils and endow CFs with higher hydrophobicity than the random one. This work provides theoretical guidance for modulating the hydrophobicity of CFs by tailoring the sequential structure of amphiphilic copolymers, which is expected to inspire the manufacturing of high-performance metal-free leather.

Graphical Abstract

两亲嵌段共聚物和无规共聚物:无金属鞣革胶原纤维上的聚集和疏水改性
使用两亲共聚物复鞣剂可以增强无金属皮革的疏水性,这对提高其综合性能至关重要。然而,两亲共聚物的序列结构与疏水改性效果之间的关系仍不清楚。本文利用甲基丙烯酸硬脂酯和甲基丙烯酸 2-(二甲基氨基)乙酯通过原子转移自由基聚合合成了一种两亲性嵌段共聚物,并制备了单体组成和分子量相似的相应无规共聚物进行比较。研究了嵌段共聚物和无规共聚物的聚集行为。DLS 和 TEM 结果表明,嵌段共聚物的聚集尺寸大于相应的无规共聚物。分子动力学模拟表明,与无规共聚物相比,嵌段共聚物聚集体的亲水外壳更厚,阳离子 DMA 嵌段分布更集中。随后,将嵌段共聚物和无规共聚物用于无金属鞣制胶原纤维(CF)的疏水改性。与无规共聚物相比,嵌段共聚物的尺寸更大,电荷分布更集中,因此与胶原纤维的结合能力更强。因此,嵌段共聚物能在胶原纤维表面形成致密、均匀的疏水膜,并赋予胶原纤维比无规共聚物更高的疏水性。这项工作为通过定制两亲共聚物的序列结构来调节 CF 的疏水性提供了理论指导,有望为高性能无金属皮革的制造带来启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Leather Science and Engineering
Journal of Leather Science and Engineering 工程技术-材料科学:综合
CiteScore
12.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信