Mudskipper detects combinatorial RNA binding protein interactions in multiplexed CLIP data.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-07-10 Epub Date: 2024-07-01 DOI:10.1016/j.xgen.2024.100603
Hsuanlin Her, Katherine L Rothamel, Grady G Nguyen, Evan A Boyle, Gene W Yeo
{"title":"Mudskipper detects combinatorial RNA binding protein interactions in multiplexed CLIP data.","authors":"Hsuanlin Her, Katherine L Rothamel, Grady G Nguyen, Evan A Boyle, Gene W Yeo","doi":"10.1016/j.xgen.2024.100603","DOIUrl":null,"url":null,"abstract":"<p><p>The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100603"},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.

Mudskipper 在多重 CLIP 数据中检测组合 RNA 结合蛋白的相互作用。
揭示蛋白质与 RNA 的相互作用有助于加深对 RNA 加工的理解。最近的多重交联和免疫沉淀(CLIP)技术,如抗体条形码 eCLIP(ABC),极大地提高了绘制 RNA 结合蛋白(RBP)结合位点的通量。然而,多重 CLIP 数据集是多变量的,每个 RBP 的信噪比不均匀。为了解决这个问题,我们开发了 Mudskipper,这是一个多功能计算套件,由两个部分组成:一个是 Dirichlet 多叉混合物模型,用于解释 ABC 数据集的多变量性质;另一个是软掩蔽方法,用于识别和去除信噪比低的 RBP 中的非特异性蛋白质-RNA 相互作用。在多重数据集上,Mudskipper 的精确度和召回率均优于现有工具,并支持对重复元素和小型非编码 RNA 的分析。我们的研究结果揭示了剪接结果和变异相关的破坏,从而能够对由 RBPs 介导的疾病和调控进行更高通量的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信