Xin Huang, Brian W L Wong, Hezul Tin-Yan Ng, Werner Sommer, Olaf Dimigen, Urs Maurer
{"title":"Neural mechanism underlying preview effects and masked priming effects in visual word processing.","authors":"Xin Huang, Brian W L Wong, Hezul Tin-Yan Ng, Werner Sommer, Olaf Dimigen, Urs Maurer","doi":"10.3758/s13414-024-02904-8","DOIUrl":null,"url":null,"abstract":"<p><p>Two classic experimental paradigms - masked repetition priming and the boundary paradigm - have played a pivotal role in understanding the process of visual word recognition. Traditionally, these paradigms have been employed by different communities of researchers, with their own long-standing research traditions. Nevertheless, a review of the literature suggests that the brain-electric correlates of word processing established with both paradigms may show interesting similarities, in particular with regard to the location, timing, and direction of N1 and N250 effects. However, as of yet, no direct comparison has been undertaken between the two paradigms. In the current study, we used combined eye-tracking/EEG to perform such a within-subject comparison using the same materials (single Chinese characters) as stimuli. To facilitate direct comparisons, we used a simplified version of the boundary paradigm - the single word boundary paradigm. Our results show the typical early repetition effects of N1 and N250 for both paradigms. However, repetition effects in N250 (i.e., a reduced negativity following identical-word primes/previews as compared to different-word primes/previews) were larger with the single word boundary paradigm than with masked priming. For N1 effects, repetition effects were similar across the two paradigms, showing a larger N1 after repetitions as compared to alternations. Therefore, the results indicate that at the neural level, a briefly presented and masked foveal prime produces qualitatively similar facilitatory effects on visual word recognition as a parafoveal preview before a single saccade, although such effects appear to be stronger in the latter case.</p>","PeriodicalId":55433,"journal":{"name":"Attention Perception & Psychophysics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Attention Perception & Psychophysics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13414-024-02904-8","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two classic experimental paradigms - masked repetition priming and the boundary paradigm - have played a pivotal role in understanding the process of visual word recognition. Traditionally, these paradigms have been employed by different communities of researchers, with their own long-standing research traditions. Nevertheless, a review of the literature suggests that the brain-electric correlates of word processing established with both paradigms may show interesting similarities, in particular with regard to the location, timing, and direction of N1 and N250 effects. However, as of yet, no direct comparison has been undertaken between the two paradigms. In the current study, we used combined eye-tracking/EEG to perform such a within-subject comparison using the same materials (single Chinese characters) as stimuli. To facilitate direct comparisons, we used a simplified version of the boundary paradigm - the single word boundary paradigm. Our results show the typical early repetition effects of N1 and N250 for both paradigms. However, repetition effects in N250 (i.e., a reduced negativity following identical-word primes/previews as compared to different-word primes/previews) were larger with the single word boundary paradigm than with masked priming. For N1 effects, repetition effects were similar across the two paradigms, showing a larger N1 after repetitions as compared to alternations. Therefore, the results indicate that at the neural level, a briefly presented and masked foveal prime produces qualitatively similar facilitatory effects on visual word recognition as a parafoveal preview before a single saccade, although such effects appear to be stronger in the latter case.
期刊介绍:
The journal Attention, Perception, & Psychophysics is an official journal of the Psychonomic Society. It spans all areas of research in sensory processes, perception, attention, and psychophysics. Most articles published are reports of experimental work; the journal also presents theoretical, integrative, and evaluative reviews. Commentary on issues of importance to researchers appears in a special section of the journal. Founded in 1966 as Perception & Psychophysics, the journal assumed its present name in 2009.