{"title":"Surface dose measurement by optically stimulated luminescent dosimeter: A phantom study","authors":"","doi":"10.1016/j.radi.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p><span>Radiotherapy<span> is the standard treatment for breast cancer patients after surgery. However, radiotherapy can cause side effects such as dry and moist </span></span>desquamation<span> of the patient's skin. The dose calculation from a treatment planning system (TPS) might also be inaccurate. The purpose of this study is to measure the surface dose on the CIRS thorax phantom by an optically stimulated luminescent dosimeter (OSLD).</span></p></div><div><h3>Methods</h3><p>The characteristics of OSLD were studied in terms of dose linearity, reproducibility, and angulation dependence on the solid water phantom. To determine the surface dose, OSLD (Landauer lnc., USA) was placed on 5 positions at the CIRS phantom (Tissue Simulation and Phantom Technology, USA). The five positions were at the tip, medial, lateral, tip-medial, and tip-lateral. Then, the doses from OSLD and TPS were compared.</p></div><div><h3>Results</h3><p>The dosimeter's characteristic test was good. The maximum dose at a depth of 15 mm was 514.46 cGy, which was at 100%. The minimum dose at the surface was 174.91 cGy, which was at 34%. The results revealed that the surface dose from TPS was less than the measurement. The percent dose difference was −2.17 ± 6.34, −12.08 ± 3.85, and −48.71 ± 1.29 at the tip, medial, and lateral positions, respectively. The surface dose from TPS at tip-medial and tip-lateral was higher than the measurement, which was 12.56 ± 5.55 and 10.45 ± 1.76 percent dose different, respectively.</p></div><div><h3>Conclusion</h3><p>The percent dose difference is within the acceptable limit, except for the lateral position because of the body curvature. However, OSLD is convenient to assess the radiation dose, and further study is to measure in vivo.</p></div><div><h3>Implication for practice</h3><p>The OSL NanoDot dosimeter can be used for dose validation with a constant setup location. The measurement dose is higher than the dose from TPS, except for some tilt angles.</p></div>","PeriodicalId":47416,"journal":{"name":"Radiography","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1078817424001597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Radiotherapy is the standard treatment for breast cancer patients after surgery. However, radiotherapy can cause side effects such as dry and moist desquamation of the patient's skin. The dose calculation from a treatment planning system (TPS) might also be inaccurate. The purpose of this study is to measure the surface dose on the CIRS thorax phantom by an optically stimulated luminescent dosimeter (OSLD).
Methods
The characteristics of OSLD were studied in terms of dose linearity, reproducibility, and angulation dependence on the solid water phantom. To determine the surface dose, OSLD (Landauer lnc., USA) was placed on 5 positions at the CIRS phantom (Tissue Simulation and Phantom Technology, USA). The five positions were at the tip, medial, lateral, tip-medial, and tip-lateral. Then, the doses from OSLD and TPS were compared.
Results
The dosimeter's characteristic test was good. The maximum dose at a depth of 15 mm was 514.46 cGy, which was at 100%. The minimum dose at the surface was 174.91 cGy, which was at 34%. The results revealed that the surface dose from TPS was less than the measurement. The percent dose difference was −2.17 ± 6.34, −12.08 ± 3.85, and −48.71 ± 1.29 at the tip, medial, and lateral positions, respectively. The surface dose from TPS at tip-medial and tip-lateral was higher than the measurement, which was 12.56 ± 5.55 and 10.45 ± 1.76 percent dose different, respectively.
Conclusion
The percent dose difference is within the acceptable limit, except for the lateral position because of the body curvature. However, OSLD is convenient to assess the radiation dose, and further study is to measure in vivo.
Implication for practice
The OSL NanoDot dosimeter can be used for dose validation with a constant setup location. The measurement dose is higher than the dose from TPS, except for some tilt angles.
RadiographyRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.70
自引率
34.60%
发文量
169
审稿时长
63 days
期刊介绍:
Radiography is an International, English language, peer-reviewed journal of diagnostic imaging and radiation therapy. Radiography is the official professional journal of the College of Radiographers and is published quarterly. Radiography aims to publish the highest quality material, both clinical and scientific, on all aspects of diagnostic imaging and radiation therapy and oncology.