Streamlining heterologous expression of top carbonic anhydrases in Escherichia coli: bioinformatic and experimental approaches.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hui Wei, Vladimir V Lunin, Markus Alahuhta, Michael E Himmel, Shu Huang, Yannick J Bomble, Min Zhang
{"title":"Streamlining heterologous expression of top carbonic anhydrases in Escherichia coli: bioinformatic and experimental approaches.","authors":"Hui Wei, Vladimir V Lunin, Markus Alahuhta, Michael E Himmel, Shu Huang, Yannick J Bomble, Min Zhang","doi":"10.1186/s12934-024-02463-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO<sub>2</sub> to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO<sub>2</sub> capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications.</p><p><strong>Results: </strong>In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity.</p><p><strong>Conclusions: </strong>Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02463-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications.

Results: In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity.

Conclusions: Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.

简化大肠杆菌中顶级碳酸酐酶的异源表达:生物信息学和实验方法。
背景:碳酸酐酶(CA)促进二氧化碳与碳酸氢根离子和质子的可逆水合作用。确定高效、稳健的 CA 并在大肠杆菌等模式宿主细胞中表达,可更有效地将这些酶用于工业二氧化碳捕获。然而,在大肠杆菌中表达 CAs 具有挑战性,因为可能会形成不溶性蛋白质聚集体或包涵体。这使得生产可溶性活性 CA 蛋白成为下游应用的先决条件:在这项研究中,我们简化了 CA 的表达过程,选择了七种顶级 CA 候选酶,并使用两种生物信息学工具预测它们在大肠杆菌中的溶解度。预测结果将这些酶分为两类:低溶解度和高溶解度。我们对高溶解度得分的 CA(即 CA5-SspCA、CA6-SazCAtrunc、CA7-PabCA 和 CA8-PhoCA)进行了表达,结果表明,在烧瓶培养物中,它们的蛋白产量(每升 5 至 75 毫克纯化蛋白)明显较高,这表明溶解度预测得分与蛋白表达产量之间存在很强的相关性。此外,系统发生树分析表明了蛋白质溶解度和产量的 CA 类特异性聚类模式。出乎意料的是,我们还发现信号序列之后的独特 N 端 11 氨基酸片段(同源物中不存在)对 CA6-SazCA 的活性至关重要:总之,这项工作证明了蛋白质溶解度预测、系统发生树分析和实验验证是识别顶级 CA 候选者,然后在大肠杆菌中生产这些酶的可溶性活性形式的有效工具。我们在此报告的综合方法应可扩展到在大肠杆菌中表达其他异质蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信