Artificial intelligence innovations in neurosurgical oncology: a narrative review.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-09-01 Epub Date: 2024-07-03 DOI:10.1007/s11060-024-04757-5
Clayton R Baker, Matthew Pease, Daniel P Sexton, Andrew Abumoussa, Lola B Chambless
{"title":"Artificial intelligence innovations in neurosurgical oncology: a narrative review.","authors":"Clayton R Baker, Matthew Pease, Daniel P Sexton, Andrew Abumoussa, Lola B Chambless","doi":"10.1007/s11060-024-04757-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes.</p><p><strong>Methods: </strong>A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors.</p><p><strong>Results: </strong>Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens.</p><p><strong>Conclusion: </strong>While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11060-024-04757-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes.

Methods: A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors.

Results: Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens.

Conclusion: While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.

Abstract Image

神经外科肿瘤学中的人工智能创新:综述。
目的:人工智能(AI)在神经外科肿瘤学中的临床应用越来越广泛。本报告回顾了影响肿瘤治疗和预后的前沿技术:方法:在研究图书馆员的协助下进行了严格的文献检索,以确定引用人工智能及相关主题(机器学习(ML)、计算机视觉(CV)、增强现实(AR)、虚拟现实(VR)等)的主要文章,用于脑肿瘤或脊柱肿瘤的神经外科治疗:中枢神经系统(CNS)肿瘤的治疗正通过人工智能(如AL、CV和AR/VR)的进步得到改善。人工智能辅助诊断和预后工具可影响患者的术前体验,而自动肿瘤分割和全切除预测则有助于手术规划。新型术中工具可快速提供肿瘤组织病理学分类,从而简化治疗策略。术后视频分析与丰富的手术模拟相配合,可以加强培训反馈和治疗方案:虽然有限的通用性、偏差和患者数据安全是目前的关注点,但联合学习的出现以及不断增长的数据联盟为未来提供了一个日益安全、强大和有效的人工智能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信