Exploring mood disorders and treatment options using human stem cells.

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genetics and Molecular Biology Pub Date : 2024-07-01 eCollection Date: 2024-01-01 DOI:10.1590/1678-4685-GMB-2023-0305
Autumn Hudock, Zaira Paulina Leal, Amandeep Sharma, Arianna Mei, Renata Santos, Maria Carolina Marchetto
{"title":"Exploring mood disorders and treatment options using human stem cells.","authors":"Autumn Hudock, Zaira Paulina Leal, Amandeep Sharma, Arianna Mei, Renata Santos, Maria Carolina Marchetto","doi":"10.1590/1678-4685-GMB-2023-0305","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their global prevalence, the mechanisms for mood disorders like bipolar disorder and major depressive disorder remain largely misunderstood. Mood stabilizers and antidepressants, although useful and effective for some, do not have a high responsiveness rate across those with these conditions. One reason for low responsiveness to these drugs is patient heterogeneity, meaning there is diversity in patient characteristics relating to genetics, etiology, and environment affecting treatment. In the past two decades, novel induced pluripotent stem cell (iPSC) research and technology have enabled the use of human-derived brain cells as a new model to study human disease that can help account for patient variance. Human iPSC technology is an emerging tool to better understand the molecular mechanisms of these disorders as well as a platform to test novel treatments and existing pharmaceuticals. This literature review describes the use of iPSC technology to model bipolar and major depressive disorder, common medications used to treat these disorders, and novel patient-derived alternative treatment methods for non-responders stemming from past publications, as well as presenting new data derived from these models.</p>","PeriodicalId":12557,"journal":{"name":"Genetics and Molecular Biology","volume":"47Suppl 1 Suppl 1","pages":"e20230305"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0305","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their global prevalence, the mechanisms for mood disorders like bipolar disorder and major depressive disorder remain largely misunderstood. Mood stabilizers and antidepressants, although useful and effective for some, do not have a high responsiveness rate across those with these conditions. One reason for low responsiveness to these drugs is patient heterogeneity, meaning there is diversity in patient characteristics relating to genetics, etiology, and environment affecting treatment. In the past two decades, novel induced pluripotent stem cell (iPSC) research and technology have enabled the use of human-derived brain cells as a new model to study human disease that can help account for patient variance. Human iPSC technology is an emerging tool to better understand the molecular mechanisms of these disorders as well as a platform to test novel treatments and existing pharmaceuticals. This literature review describes the use of iPSC technology to model bipolar and major depressive disorder, common medications used to treat these disorders, and novel patient-derived alternative treatment methods for non-responders stemming from past publications, as well as presenting new data derived from these models.

利用人类干细胞探索情绪障碍和治疗方案。
尽管双相情感障碍和重度抑郁症等情绪障碍在全球普遍存在,但其发病机制在很大程度上仍被误解。情绪稳定剂和抗抑郁药虽然对某些人有用且有效,但对这些疾病患者的反应率并不高。患者对这些药物反应不佳的原因之一是患者的异质性,即与遗传、病因和环境有关的患者特征的多样性会影响治疗。在过去二十年里,新型诱导多能干细胞(iPSC)研究和技术使人源脑细胞成为研究人类疾病的新模型,有助于解释患者的差异。人类 iPSC 技术是一种新兴工具,可用于更好地了解这些疾病的分子机制,同时也是测试新型疗法和现有药物的平台。本文献综述介绍了 iPSC 技术在双相情感障碍和重度抑郁症模型中的应用、治疗这些疾病的常用药物、过去发表的文章中针对无应答患者的新型患者衍生替代治疗方法,以及从这些模型中获得的新数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics and Molecular Biology
Genetics and Molecular Biology 生物-生化与分子生物学
CiteScore
4.20
自引率
4.80%
发文量
111
审稿时长
3 months
期刊介绍: Genetics and Molecular Biology (formerly named Revista Brasileira de Genética/Brazilian Journal of Genetics - ISSN 0100-8455) is published by the Sociedade Brasileira de Genética (Brazilian Society of Genetics). The Journal considers contributions that present the results of original research in genetics, evolution and related scientific disciplines. Manuscripts presenting methods and applications only, without an analysis of genetic data, will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信