A programming toolbox for calculating beta-Euler shape exponents from plant growth data.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jerzy Kosek, Mariusz Pietruszka
{"title":"A programming toolbox for calculating beta-Euler shape exponents from plant growth data.","authors":"Jerzy Kosek, Mariusz Pietruszka","doi":"10.4149/gpb_2024016","DOIUrl":null,"url":null,"abstract":"<p><p>Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2024016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.

根据植物生长数据计算 beta-Euler 形状指数的编程工具箱。
自 20 世纪中期植物生理学引入酸性生长理论和大型计算机普及以来,人们越来越需要准确预测植物细胞在生长过程中的形态参数。本文介绍的计算机程序采用独创的数值方法求解高度非线性的生长方程。该程序使用 Python 编写,Python 是一种流行的开源科学软件环境,称为 CoCalc 或 SAGE。该程序可用于确定单个植物细胞或多细胞器官(如叶柄或下胚轴节段)在非聚合极限下的生长情况。这个独立的程序旨在方便用户使用,让所有读者都能无障碍地使用。只需几个关键参数(包括 pH 值和温度),该程序就能提供一套实用工具,用于比较植物生物学各领域与生长相关的实验数据。此外,它还可用于预测植物在辅助迁移过程中的生长情况,尤其是在气候变化的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信