{"title":"The effect of successive summer drought periods on bacterial diversity along a plant species richness gradient.","authors":"Yuri Pinheiro Alves de Souza, Roberto Siani, Cynthia Albracht, Yuanyuan Huang, Nico Eisenhauer, Anja Vogel, Cameron Wagg, Michael Schloter, Stefanie Schulz","doi":"10.1093/femsec/fiae096","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a major stressor to soil microbial communities, and the intensification of climate change is predicted to increase hydric stress worldwide in the coming decades. As a possible mitigating factor for the consequences of prolonged drought periods, above and belowground biodiversity can increase ecosystem resistance and resilience by improving metabolic redundancy and complementarity as biodiversity increases. Here, we investigated the interaction effect between plant richness and successive, simulated summer drought on soil microbial communities during a period of 9 years.To do that, we made use of a well-established biodiversity experiment (The Jena Experiment) to investigate the response of microbial richness and community composition to successive drought periods alongside a plant richness gradient, which covers 1-, 2-, 4-, 8-, 16-, and 60-species plant communities. Plots were covered from natural precipitation by installing rain shelters 6 weeks every summer. Bulk soil samples were collected 1 year after the last summer drought was simulated. Our data indicate that bacterial richness increased after successive exposure to drought, with the increase being stable along the plant richness gradient. We identified a significant effect of plant species richness on the soil microbial community composition and determined the taxa significantly impacted by drought at each plant richness level. Our data successfully demonstrates that summer drought might have a legacy effect on soil bacterial communities.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a major stressor to soil microbial communities, and the intensification of climate change is predicted to increase hydric stress worldwide in the coming decades. As a possible mitigating factor for the consequences of prolonged drought periods, above and belowground biodiversity can increase ecosystem resistance and resilience by improving metabolic redundancy and complementarity as biodiversity increases. Here, we investigated the interaction effect between plant richness and successive, simulated summer drought on soil microbial communities during a period of 9 years.To do that, we made use of a well-established biodiversity experiment (The Jena Experiment) to investigate the response of microbial richness and community composition to successive drought periods alongside a plant richness gradient, which covers 1-, 2-, 4-, 8-, 16-, and 60-species plant communities. Plots were covered from natural precipitation by installing rain shelters 6 weeks every summer. Bulk soil samples were collected 1 year after the last summer drought was simulated. Our data indicate that bacterial richness increased after successive exposure to drought, with the increase being stable along the plant richness gradient. We identified a significant effect of plant species richness on the soil microbial community composition and determined the taxa significantly impacted by drought at each plant richness level. Our data successfully demonstrates that summer drought might have a legacy effect on soil bacterial communities.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms