Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2

IF 4.8 3区 化学 Q1 CHEMISTRY, MEDICINAL
Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti
{"title":"Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2","authors":"Felaine Anne Sumang,&nbsp;Alan Ward,&nbsp;Jeff Errington,&nbsp;Yousef Dashti","doi":"10.1007/s13659-024-00460-0","DOIUrl":null,"url":null,"abstract":"<div><p>Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant–microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (<b>1</b>) and aureothricin (<b>2</b>), by <i>Streptomyces</i> sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (<b>3</b>) and hydroxycitric acid 1,3-dimethyl ester (<b>4</b>). It was subsequently found that the addition of either Fe<sup>2+</sup> or Fe<sup>3+</sup> to culture media induced the production of <b>1</b> and <b>2</b>. The Chrome Azurol S (CAS) assay revealed that <b>3</b> and <b>4</b> can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant–microbe interactions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-024-00460-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plants and microbes are closely associated with each other in their ecological niches. Much has been studied about plant–microbe interactions, but little is known about the effect of phytochemicals on microbes at the molecular level. To access the products of cryptic biosynthetic gene clusters in bacteria, we incorporated an organic extract of hibiscus flowers into the culture media of different Actinobacteria isolated from plant rhizospheres. This approach led to the production of broad-spectrum dithiolopyrrolone (DTP) antibiotics, thiolutin (1) and aureothricin (2), by Streptomyces sp. MBN2-2. The compounds from the hibiscus extract responsible for triggering the production of these two DTPs were found to be hibiscus acid dimethyl ester (3) and hydroxycitric acid 1,3-dimethyl ester (4). It was subsequently found that the addition of either Fe2+ or Fe3+ to culture media induced the production of 1 and 2. The Chrome Azurol S (CAS) assay revealed that 3 and 4 can chelate iron, and therefore, the mechanism leading to the production of thiolutin and aureothricin appears to be related to changes in iron concentration levels. This work supports the idea that phytochemicals can be used to activate the production of cryptic microbial biosynthetic gene clusters and further understand plant–microbe interactions.

Graphical Abstract

Abstract Image

木槿花中的木槿酸和羟基柠檬酸二甲酯可诱导链霉菌 MBN2-2 株产生二硫代吡咯酮类抗生素。
植物和微生物在其生态位中密切相关。关于植物与微生物之间相互作用的研究很多,但关于植物化学物质在分子水平上对微生物的影响却知之甚少。为了获取细菌中隐秘生物合成基因簇的产物,我们将木槿花的有机提取物加入从植物根瘤中分离出来的不同放线菌的培养基中。通过这种方法,链霉菌 MBN2-2 生产出了广谱二硫代吡咯烷酮(DTP)抗生素--硫柳丁(1)和金霉素(2)。从木槿提取物中发现,引发这两种 DTP 生成的化合物是木槿酸二甲酯(3)和羟基柠檬酸 1,3 二甲基酯(4)。随后发现,在培养基中加入 Fe2+ 或 Fe3+ 可诱导产生 1 和 2。Chrome Azurol S(CAS)测定显示,3 和 4 可以螯合铁,因此,导致硫醇素和金霉素产生的机制似乎与铁浓度水平的变化有关。这项工作支持了植物化学物质可用于激活隐性微生物生物合成基因簇的产生并进一步了解植物与微生物相互作用的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Products and Bioprospecting
Natural Products and Bioprospecting CHEMISTRY, MEDICINAL-
CiteScore
8.30
自引率
2.10%
发文量
39
审稿时长
13 weeks
期刊介绍: Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects: Natural products: isolation and structure elucidation Natural products: synthesis Biological evaluation of biologically active natural products Bioorganic and medicinal chemistry Biosynthesis and microbiological transformation Fermentation and plant tissue cultures Bioprospecting of natural products from natural resources All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信