Sai Wang, Yuanyi Yue, Xueqing Wang, Yue Tan, Qiang Zhang
{"title":"SCARF2 is a target for chronic obstructive pulmonary disease: Evidence from multi-omics research and cohort validation","authors":"Sai Wang, Yuanyi Yue, Xueqing Wang, Yue Tan, Qiang Zhang","doi":"10.1111/acel.14266","DOIUrl":null,"url":null,"abstract":"<p>Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of <i>SCARF2</i> protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of <i>SCARF2</i> was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that <i>SCARF2</i> expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum <i>SCARF2</i> protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The <i>SCARF2</i> gene should be a novel target for COP.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14266","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of SCARF2 protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of SCARF2 was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that SCARF2 expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum SCARF2 protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The SCARF2 gene should be a novel target for COP.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.