Understanding and Engineering the Perovskite/Organometallic Hole Transport Interface for High-Performance p–i–n Single Cells and Textured Tandem Solar Cells

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shaojie Yuan, Kaitian Mao, Fengchun Cai, Zhengjie Zhu, Hongguang Meng, Tieqiang Li, Wei Peng, Xingyu Feng, Weiwei Chen, Jiahang Xu and Jixian Xu*, 
{"title":"Understanding and Engineering the Perovskite/Organometallic Hole Transport Interface for High-Performance p–i–n Single Cells and Textured Tandem Solar Cells","authors":"Shaojie Yuan,&nbsp;Kaitian Mao,&nbsp;Fengchun Cai,&nbsp;Zhengjie Zhu,&nbsp;Hongguang Meng,&nbsp;Tieqiang Li,&nbsp;Wei Peng,&nbsp;Xingyu Feng,&nbsp;Weiwei Chen,&nbsp;Jiahang Xu and Jixian Xu*,&nbsp;","doi":"10.1021/acsenergylett.4c01301","DOIUrl":null,"url":null,"abstract":"<p >To address challenges in perovskite solar cells integrated with textured silicon, we developed a multilayer structured hole transport layer (HTL) on the basis of organometallic copper phthalocyanine (CuPc): <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetra[(1,1′-biphenyl)-4-yl](1,1′:4′,1″-terphenyl)-4,4″-diamine (TaTm)/CuPc/Al<sub>2</sub>O<sub>3</sub>. Thermally evaporated CuPc provides stability and desired wettability for the perovskite solution. We identified a unique surface-bulk recombination pattern at the CuPc/perovskite interface that results in a high fill factor (FF = 87%) but a low open-circuit voltage (<i>V</i><sub>oc</sub>) due to surface recombination losses. TaTm enhances electron blocking, while Al<sub>2</sub>O<sub>3</sub> forms a porous insulator contact that mitigates nonradiative recombination. Double-sided optimization of CuPc with TaTm and Al<sub>2</sub>O<sub>3</sub> effectively reduced the surface recombination without compromising the carrier extraction efficiency. This HTL structure achieved PCE values of 22.5% and 24.5% for 1.65 and 1.54 eV perovskite in p–i–n single cells and 28.9% in textured silicon/perovskite tandem cells. The conformal and wettable HTL structure promotes uniform perovskite coating, thereby reducing issues, such as pyramid puncturing, on textured Cz-Si wafers from production lines.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01301","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address challenges in perovskite solar cells integrated with textured silicon, we developed a multilayer structured hole transport layer (HTL) on the basis of organometallic copper phthalocyanine (CuPc): N,N,N′,N′-tetra[(1,1′-biphenyl)-4-yl](1,1′:4′,1″-terphenyl)-4,4″-diamine (TaTm)/CuPc/Al2O3. Thermally evaporated CuPc provides stability and desired wettability for the perovskite solution. We identified a unique surface-bulk recombination pattern at the CuPc/perovskite interface that results in a high fill factor (FF = 87%) but a low open-circuit voltage (Voc) due to surface recombination losses. TaTm enhances electron blocking, while Al2O3 forms a porous insulator contact that mitigates nonradiative recombination. Double-sided optimization of CuPc with TaTm and Al2O3 effectively reduced the surface recombination without compromising the carrier extraction efficiency. This HTL structure achieved PCE values of 22.5% and 24.5% for 1.65 and 1.54 eV perovskite in p–i–n single cells and 28.9% in textured silicon/perovskite tandem cells. The conformal and wettable HTL structure promotes uniform perovskite coating, thereby reducing issues, such as pyramid puncturing, on textured Cz-Si wafers from production lines.

Abstract Image

Abstract Image

了解并设计用于高性能 pi-i-n 单电池和纹理串联太阳能电池的过氧化物/有机金属空穴传输界面
为了应对与纹理硅集成的过氧化物太阳能电池所面临的挑战,我们在有机金属铜酞菁(CuPc)的基础上开发了一种多层结构空穴传输层(HTL):N,N,N′,N′-四[(1,1′-联苯)-4-基](1,1′:4′,1″-三联苯)-4,4″-二胺(TaTm)/CuPc/Al2O3。热蒸发的 CuPc 为包晶溶液提供了稳定性和理想的润湿性。我们在 CuPc/ perovskite 界面上发现了一种独特的表面-散射重组模式,这种模式导致了高填充因子(FF = 87%),但由于表面重组损耗,开路电压(Voc)较低。TaTm 增强了电子阻挡,而 Al2O3 则形成了多孔绝缘体接触,减轻了非辐射重组。用 TaTm 和 Al2O3 对 CuPc 进行双面优化,在不影响载流子萃取效率的情况下有效降低了表面重组。这种 HTL 结构使 pi-n 单电池中 1.65 和 1.54 eV 的过氧化物的 PCE 值分别达到 22.5% 和 24.5%,使纹理硅/过氧化物串联电池的 PCE 值达到 28.9%。保形和可润湿 HTL 结构促进了包晶石涂层的均匀性,从而减少了生产线上有纹理的 Cz-Si 硅片上的金字塔穿刺等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信