Weiliang Bai, Ruizhe Xu, Mircea Podar, Cynthia M. Swift, Navid B. Saleh, Frank E. Löffler, Pedro J. J. Alvarez, Manish Kumar
{"title":"Point-of-use filtration units as drinking water distribution system sentinels","authors":"Weiliang Bai, Ruizhe Xu, Mircea Podar, Cynthia M. Swift, Navid B. Saleh, Frank E. Löffler, Pedro J. J. Alvarez, Manish Kumar","doi":"10.1038/s41545-024-00346-1","DOIUrl":null,"url":null,"abstract":"Municipal drinking water distribution systems (DWDSs) and associated premise plumbing (PP) systems are vulnerable to proliferation of opportunistic pathogens, even when chemical disinfection residuals are present, thus presenting a public health risk. Monitoring the structure of microbial communities of drinking water is challenging because of limited continuous access to faucets, pipes, and storage tanks. We propose a scalable household sampling method, which uses spent activated carbon and reverse osmosis (RO) membrane point-of-use (POU) filters to evaluate mid- to long-term occurrence of microorganisms in PP systems that are relevant to consumer exposure. As a proof of concept, POU filter microbiomes were collected from four different locations and analyzed with 16S rRNA gene amplicon sequencing. The analyses revealed distinct microbial communities, with occasional detection of potential pathogens. The findings highlight the importance of local, and if possible, continuous monitoring within and across distribution systems. The continuous operation of POU filters offers an advantage in capturing species that may be missed by instantaneous sampling methods. We suggest that water utilities, public institutions, and regulatory agencies take advantage of end-of-life POU filters for microbial monitoring. This approach can be easily implemented to ensure drinking water safety, especially from microbes of emerging concerns; e.g., pathogenic Legionella and Mycobacterium species.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-7"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00346-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00346-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Municipal drinking water distribution systems (DWDSs) and associated premise plumbing (PP) systems are vulnerable to proliferation of opportunistic pathogens, even when chemical disinfection residuals are present, thus presenting a public health risk. Monitoring the structure of microbial communities of drinking water is challenging because of limited continuous access to faucets, pipes, and storage tanks. We propose a scalable household sampling method, which uses spent activated carbon and reverse osmosis (RO) membrane point-of-use (POU) filters to evaluate mid- to long-term occurrence of microorganisms in PP systems that are relevant to consumer exposure. As a proof of concept, POU filter microbiomes were collected from four different locations and analyzed with 16S rRNA gene amplicon sequencing. The analyses revealed distinct microbial communities, with occasional detection of potential pathogens. The findings highlight the importance of local, and if possible, continuous monitoring within and across distribution systems. The continuous operation of POU filters offers an advantage in capturing species that may be missed by instantaneous sampling methods. We suggest that water utilities, public institutions, and regulatory agencies take advantage of end-of-life POU filters for microbial monitoring. This approach can be easily implemented to ensure drinking water safety, especially from microbes of emerging concerns; e.g., pathogenic Legionella and Mycobacterium species.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.