Sebastian Pazos, Yaqing Shen, Haoran Zhang, Jordi Verdú, Andrés Fontana, Wenwen Zheng, Yue Yuan, Osamah Alharbi, Yue Ping, Eloi Guerrero, Lluís Acosta, Pedro de Paco, Dimitra Psychogiou, Atif Shamim, Deji Akinwande, Mario Lanza
{"title":"Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications","authors":"Sebastian Pazos, Yaqing Shen, Haoran Zhang, Jordi Verdú, Andrés Fontana, Wenwen Zheng, Yue Yuan, Osamah Alharbi, Yue Ping, Eloi Guerrero, Lluís Acosta, Pedro de Paco, Dimitra Psychogiou, Atif Shamim, Deji Akinwande, Mario Lanza","doi":"10.1038/s41928-024-01192-2","DOIUrl":null,"url":null,"abstract":"Radiofrequency switches that drive or block high-frequency electromagnetic signals—typically, a few to tens of gigahertz—are essential components in modern communication devices. However, demand for higher data transmission rates requires radiofrequency switches capable of operating at frequencies beyond 100 GHz, which is challenging for current technologies. Here we report ambipolar memristive radiofrequency switches that are based on multilayer hexagonal boron nitride and can operate at frequencies up to 260 GHz. The ambipolar behaviour, which could help reduce peripheral hardware requirements, is due to a Joule-effect-assisted reset. We show switching in 21 devices with low-resistance states averaging 294 Ω and endurances of 2,000 cycles. With further biasing optimization, we reduce the resistance to 9.3 ± 3.7 Ω over more than 475 cycles, and achieve an insertion loss of 0.9 dB at 120 GHz. We also build a series–shunt device configuration with an isolation of 35 dB at 120 GHz. An optimized pulsed voltage write–verify switching approach can be used to improve the switching performance of memristors based on hexagonal boron nitride for radiofrequency circuit applications.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"557-566"},"PeriodicalIF":33.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01192-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Radiofrequency switches that drive or block high-frequency electromagnetic signals—typically, a few to tens of gigahertz—are essential components in modern communication devices. However, demand for higher data transmission rates requires radiofrequency switches capable of operating at frequencies beyond 100 GHz, which is challenging for current technologies. Here we report ambipolar memristive radiofrequency switches that are based on multilayer hexagonal boron nitride and can operate at frequencies up to 260 GHz. The ambipolar behaviour, which could help reduce peripheral hardware requirements, is due to a Joule-effect-assisted reset. We show switching in 21 devices with low-resistance states averaging 294 Ω and endurances of 2,000 cycles. With further biasing optimization, we reduce the resistance to 9.3 ± 3.7 Ω over more than 475 cycles, and achieve an insertion loss of 0.9 dB at 120 GHz. We also build a series–shunt device configuration with an isolation of 35 dB at 120 GHz. An optimized pulsed voltage write–verify switching approach can be used to improve the switching performance of memristors based on hexagonal boron nitride for radiofrequency circuit applications.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.