Renan Dal-Fabbro, Minzhi Yu, Ling Mei, Hajime Sasaki, Anna Schwendeman, Marco C. Bottino
{"title":"Synthetic high-density lipoprotein (sHDL): a bioinspired nanotherapeutics for managing periapical bone inflammation","authors":"Renan Dal-Fabbro, Minzhi Yu, Ling Mei, Hajime Sasaki, Anna Schwendeman, Marco C. Bottino","doi":"10.1038/s41368-024-00316-w","DOIUrl":null,"url":null,"abstract":"<p>Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (<i>i.e</i>., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide–eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (<i>P</i> < 0.001), and inhibits IL-1α (<i>P</i> = 0.027), TNF-α (<i>P</i> = 0.004), and IL-6 (<i>P</i> < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as <i>Il1b</i>, <i>Il1a</i>, <i>Il6</i>, <i>Ptgs2</i>, and <i>Tnf</i>. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm<sup>3</sup> and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm<sup>3</sup> (<i>P</i> = 0.012 3) and (2 443 ± 931) cells (<i>P</i> = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-024-00316-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (i.e., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide–eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (P < 0.001), and inhibits IL-1α (P = 0.027), TNF-α (P = 0.004), and IL-6 (P < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as Il1b, Il1a, Il6, Ptgs2, and Tnf. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm3 and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm3 (P = 0.012 3) and (2 443 ± 931) cells (P = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.