Nonlinear optical physics at terahertz frequency

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yao Lu, Yibo Huang, Junkai Cheng, Ruobin Ma, Xitan Xu, Yijia Zang, Qiang Wu, Jingjun Xu
{"title":"Nonlinear optical physics at terahertz frequency","authors":"Yao Lu, Yibo Huang, Junkai Cheng, Ruobin Ma, Xitan Xu, Yijia Zang, Qiang Wu, Jingjun Xu","doi":"10.1515/nanoph-2024-0109","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) waves have exhibited promising prospects in 6G/7G communications, sensing, nondestructive detection, material modulation, and biomedical applications. With the development of high-power THz sources, more and more nonlinear optical effects at THz frequency and THz-induced nonlinear optical phenomena are investigated. These studies not only show a clear physics picture of electrons, ions, and molecules but also provide many novel applications in sensing, imaging, communications, and aerospace. Here, we review recent developments in THz nonlinear physics and THz-induced nonlinear optical phenomena. This review provides an overview and illustrates examples of how to achieve strong THz nonlinear phenomena and how to use THz waves to achieve nonlinear material modulation.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"49 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0109","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) waves have exhibited promising prospects in 6G/7G communications, sensing, nondestructive detection, material modulation, and biomedical applications. With the development of high-power THz sources, more and more nonlinear optical effects at THz frequency and THz-induced nonlinear optical phenomena are investigated. These studies not only show a clear physics picture of electrons, ions, and molecules but also provide many novel applications in sensing, imaging, communications, and aerospace. Here, we review recent developments in THz nonlinear physics and THz-induced nonlinear optical phenomena. This review provides an overview and illustrates examples of how to achieve strong THz nonlinear phenomena and how to use THz waves to achieve nonlinear material modulation.
太赫兹频率下的非线性光学物理
太赫兹(THz)波在 6G/7G 通信、传感、无损检测、材料调制和生物医学等领域的应用前景广阔。随着高功率太赫兹源的发展,越来越多的太赫兹频率非线性光学效应和太赫兹诱导的非线性光学现象得到研究。这些研究不仅展示了电子、离子和分子的清晰物理图景,还在传感、成像、通信和航空航天领域提供了许多新的应用。在此,我们回顾了太赫兹非线性物理学和太赫兹诱导非线性光学现象的最新发展。本综述概述并举例说明了如何实现强烈的太赫兹非线性现象以及如何利用太赫兹波实现非线性材料调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信