{"title":"Research on OPF Control of Three-Phase Four-Wire Low-Voltage Distribution Network considering Uncertainty","authors":"Rui Wang, Xiaoqing Bai, Shengquan Huang, Shoupu Wei","doi":"10.1155/2024/5153946","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As power systems become more complex and uncertain, low-voltage distribution networks face numerous challenges, including three-phase imbalances caused by asymmetrical loads and distributed energy resources. We propose a robust stochastic optimization (RSO)-based optimal power flow (OPF) control method for three-phase four-wire low-voltage distribution networks that consider uncertainty to address these issues. Using historical data and deep learning classification methods, the proposed method simulates optimal system behaviour without requiring communication infrastructure. The simulation results verify that the proposed method effectively controls the voltage and current amplitude while minimizing the operational cost and three-phase imbalance within acceptable limits. The proposed method shows promise for managing uncertainties and optimizing performance in low-voltage distribution networks.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5153946","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5153946","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As power systems become more complex and uncertain, low-voltage distribution networks face numerous challenges, including three-phase imbalances caused by asymmetrical loads and distributed energy resources. We propose a robust stochastic optimization (RSO)-based optimal power flow (OPF) control method for three-phase four-wire low-voltage distribution networks that consider uncertainty to address these issues. Using historical data and deep learning classification methods, the proposed method simulates optimal system behaviour without requiring communication infrastructure. The simulation results verify that the proposed method effectively controls the voltage and current amplitude while minimizing the operational cost and three-phase imbalance within acceptable limits. The proposed method shows promise for managing uncertainties and optimizing performance in low-voltage distribution networks.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.