Iwasawa theory of fine Selmer groups associated to Drinfeld modules

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-06-27 DOI:10.1112/mtk.12264
Anwesh Ray
{"title":"Iwasawa theory of fine Selmer groups associated to Drinfeld modules","authors":"Anwesh Ray","doi":"10.1112/mtk.12264","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> be a prime power and <span></span><math></math> be the rational function field over <span></span><math></math>, the field with <span></span><math></math> elements. Let <span></span><math></math> be a Drinfeld module over <span></span><math></math> and <span></span><math></math> be a nonzero prime ideal of <span></span><math></math>. Over the constant <span></span><math></math>-extension of <span></span><math></math>, we introduce the fine Selmer group associated to the <span></span><math></math>-primary torsion of <span></span><math></math>. We show that it is a cofinitely generated module over <span></span><math></math>. This proves an analogue of Iwasawa's <span></span><math></math> conjecture in this setting, and provides context for the further study of the objects that have been introduced in this article.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12264","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let be a prime power and be the rational function field over , the field with elements. Let be a Drinfeld module over and be a nonzero prime ideal of . Over the constant -extension of , we introduce the fine Selmer group associated to the -primary torsion of . We show that it is a cofinitely generated module over . This proves an analogue of Iwasawa's conjecture in this setting, and provides context for the further study of the objects that have been introduced in this article.

与 Drinfeld 模块相关的细塞尔默群的岩泽理论
让 是一个素幂, 是有理函数域, 是有元素的域。让 是一个德林费尔德模块,并且 是 的一个非零素数理想。 在 的常数-扩展上,我们引入了与 的-主扭相关联的精细塞尔默群。 我们证明它是一个在 上无限生成的模块。这证明了岩泽猜想在此环境中的类似,并为进一步研究本文介绍的对象提供了背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信