{"title":"Mutual Coupling Reduction in a Switched Beamforming Multilayer Antenna Array System","authors":"Emna Jebabli, Mohamed Hayouni, Fethi Choubani","doi":"10.1155/2024/3615181","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a millimeter-wave beamforming antenna array for the fifth generation (5G) of mobile networks and beyond. One of our priority objectives was to minimize the antenna array’s total physical size, by paying attention to avoid radiation performance degradation, such as bandwidth and efficiency. Another priority objective was to avoid mutual coupling (MC) between radiation elements and enhance the gain of the antenna to meet the requirements and challenges of the 5G. In these prospects, we have designed a 4 × 3 Chebyshev modified rectangular antenna array, engraved on the dielectric substrate of the top layer. The antenna array is powered across a 4 × 4 Butler matrix, engraved on the dielectric substrate of the bottom layer. The prototype overall size is 35.76 × 45.56 × 1.589 mm<sup>3</sup>. Hence, four switched main lobes pointed according to the angles -14°, +26°, -23° and +12°. The corresponded maximum gains at 28 GHz are 11.1, 10.5, 11, and 11.5 dB, respectively. Moreover, a reduction of the MC is ensured by using a CSRR metamaterial carved into the ground plane (GP) of the upper dielectric substrate layer. Experimental and simulation results concord well and show a multiband behavior at 26 GHz and in Ka-band. The impedance bandwidths are 1.5%, 2.7%, and 2.43% at 26, 28, and 40 GHz, respectively. A low MC, between the antenna array’s elements, is also achieved, and the levels of the transmission coefficients vary between -11 dB and -68 dB.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3615181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3615181","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a millimeter-wave beamforming antenna array for the fifth generation (5G) of mobile networks and beyond. One of our priority objectives was to minimize the antenna array’s total physical size, by paying attention to avoid radiation performance degradation, such as bandwidth and efficiency. Another priority objective was to avoid mutual coupling (MC) between radiation elements and enhance the gain of the antenna to meet the requirements and challenges of the 5G. In these prospects, we have designed a 4 × 3 Chebyshev modified rectangular antenna array, engraved on the dielectric substrate of the top layer. The antenna array is powered across a 4 × 4 Butler matrix, engraved on the dielectric substrate of the bottom layer. The prototype overall size is 35.76 × 45.56 × 1.589 mm3. Hence, four switched main lobes pointed according to the angles -14°, +26°, -23° and +12°. The corresponded maximum gains at 28 GHz are 11.1, 10.5, 11, and 11.5 dB, respectively. Moreover, a reduction of the MC is ensured by using a CSRR metamaterial carved into the ground plane (GP) of the upper dielectric substrate layer. Experimental and simulation results concord well and show a multiband behavior at 26 GHz and in Ka-band. The impedance bandwidths are 1.5%, 2.7%, and 2.43% at 26, 28, and 40 GHz, respectively. A low MC, between the antenna array’s elements, is also achieved, and the levels of the transmission coefficients vary between -11 dB and -68 dB.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.