Inhibition of thyrotropin-stimulated adenosine 3',5'-monophosphate formation in rat thyroid cells by an adenosine analog. Evidence that the inhibition is mediated by the putative inhibitory guanine nucleotide regulatory protein.
{"title":"Inhibition of thyrotropin-stimulated adenosine 3',5'-monophosphate formation in rat thyroid cells by an adenosine analog. Evidence that the inhibition is mediated by the putative inhibitory guanine nucleotide regulatory protein.","authors":"M I Berman, C G Thomas, S N Nayfeh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Addition of N6-(L-2-phenylisopropyl)-adenosine (PIA) to cultured FRTL-5 rat thyroid cells led to a concentration-dependent inhibition of TSH-stimulated cAMP formation. Half-maximal inhibition was attained with approximately 0.5 nM PIA. Forskolin and cholera toxin-stimulated cAMP production were also inhibited by PIA. 3-Isobutyl-methylxanthine inhibited the effect of PIA. These results are consistent with the presence of inhibitory adenosine receptors (Ri). Ri-sites were further demonstrated by the binding of 3H-cyclohexyl-adenosine to FRTL-5 plasma membranes. High (Kd = 0.50 +/- 0.07 nM) and low affinity (Kd = 5.95 +/- 2.33 nM) binding sites were observed. Pretreatment of FRTL-5 cells with pertussis, but not cholera, toxin effectively antagonized the inhibitory effects of PIA on cAMP production. ADP-ribosylation of FRTL-5 membranes with [32P]-NAD in the presence of cholera or pertussis toxin specifically labeled a 45,000 and 41,000 Mr species, respectively, which correspond to the alpha subunit of the stimulatory and inhibitory guanine nucleotide regulatory proteins. These results demonstrate that PIA inhibits TSH-stimulated cAMP production via Ri-sites on FRTL-5 thyroid cells. PIA appears to exert its inhibitory effects through the inhibitory guanine nucleotide regulatory protein.</p>","PeriodicalId":15406,"journal":{"name":"Journal of cyclic nucleotide and protein phosphorylation research","volume":"11 2","pages":"99-111"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cyclic nucleotide and protein phosphorylation research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Addition of N6-(L-2-phenylisopropyl)-adenosine (PIA) to cultured FRTL-5 rat thyroid cells led to a concentration-dependent inhibition of TSH-stimulated cAMP formation. Half-maximal inhibition was attained with approximately 0.5 nM PIA. Forskolin and cholera toxin-stimulated cAMP production were also inhibited by PIA. 3-Isobutyl-methylxanthine inhibited the effect of PIA. These results are consistent with the presence of inhibitory adenosine receptors (Ri). Ri-sites were further demonstrated by the binding of 3H-cyclohexyl-adenosine to FRTL-5 plasma membranes. High (Kd = 0.50 +/- 0.07 nM) and low affinity (Kd = 5.95 +/- 2.33 nM) binding sites were observed. Pretreatment of FRTL-5 cells with pertussis, but not cholera, toxin effectively antagonized the inhibitory effects of PIA on cAMP production. ADP-ribosylation of FRTL-5 membranes with [32P]-NAD in the presence of cholera or pertussis toxin specifically labeled a 45,000 and 41,000 Mr species, respectively, which correspond to the alpha subunit of the stimulatory and inhibitory guanine nucleotide regulatory proteins. These results demonstrate that PIA inhibits TSH-stimulated cAMP production via Ri-sites on FRTL-5 thyroid cells. PIA appears to exert its inhibitory effects through the inhibitory guanine nucleotide regulatory protein.