Corrigendum to “QCD parameters and SM-high precision from e+e−→ Hadrons: Updated” [Nucl. Phys. A 1046 (2024) 122873]

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Stephan Narison
{"title":"Corrigendum to “QCD parameters and SM-high precision from e+e−→ Hadrons: Updated” [Nucl. Phys. A 1046 (2024) 122873]","authors":"Stephan Narison","doi":"10.1016/j.nuclphysa.2024.122915","DOIUrl":null,"url":null,"abstract":"<div><p><em>Parts 3 and 4 of the original Abstract have been modified as:</em></p><p><strong>3.</strong> I use these new values of the <span><math><mi>D</mi><mo>=</mo><mn>6</mn><mo>,</mo><mn>8</mn></math></span> power corrections to extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the BNP lowest moment. To order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, I find within the SVZ expansion: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3081</mn><msub><mrow><mo>(</mo><mn>49</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>71</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3260</mn><msub><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1170</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1192</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3179</mn><msub><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>81</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1182</mn><mo>(</mo><mn>12</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we obtain from the vector (V) component of <em>τ</em>-decay data: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3128</mn><msub><mrow><mo>(</mo><mn>19</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>77</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3291</mn><msub><mrow><mo>(</mo><mn>25</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>65</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1176</mn><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1196</mn><mo>(</mo><mn>8</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for FO [resp. CI] PT series, giving the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3219</mn><mo>(</mo><mn>52</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>91</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1187</mn><mo>(</mo><mn>13</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>. The average of the two determinations from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <em>τ</em>-decay data is: <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.3198</mn><mo>(</mo><mn>72</mn><mo>)</mo></math></span> which implies <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.1185</mn><mo>(</mo><mn>9</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>.</p><p><strong>4.</strong> Some (eventual) contributions beyond the SVZ expansion (<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, instantons and duality violation) are discussed in Sections 10 and 11 which are expected to be relatively small.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375947424000976/pdfft?md5=041d74ed5bc9b976ab931d614a6043bc&pid=1-s2.0-S0375947424000976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000976","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Parts 3 and 4 of the original Abstract have been modified as:

3. I use these new values of the D=6,8 power corrections to extract αs from the BNP lowest moment. To order αs4, I find within the SVZ expansion: αs(Mτ)|e+eSVZ=0.3081(49)fit(71)αs5 [resp. 0.3260(47)fit(62)αs5] implying αs(MZ)|e+eSVZ=0.1170(6)(3)evol [resp. 0.1192(6)(3)evol] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: αs(Mτ)|e+eSVZ=0.3179(58)fit(81)syst and αs(MZ)|e+eSVZ=0.1182(12)(3)evol where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we obtain from the vector (V) component of τ-decay data: αs(Mτ)|τ,VSVZ=0.3128(19)fit(77)αs5 [resp. 0.3291(25)fit(65)αs5] implying αs(MZ)|τ,VSVZ=0.1176(10)(3)evol [resp. 0.1196(8)(3)evol] for FO [resp. CI] PT series, giving the mean: αs(Mτ)|τ,VSVZ=0.3219(52)(91)syst leading to: αs(MZ)|τ,VSVZ=0.1187(13)(3)evol. The average of the two determinations from e+e and τ-decay data is: αs(Mτ)=0.3198(72) which implies αs(MZ)=0.1185(9)(3)evol.

4. Some (eventual) contributions beyond the SVZ expansion (1/Q2, instantons and duality violation) are discussed in Sections 10 and 11 which are expected to be relatively small.

来自 e+e-→ Hadrons 的 QCD 参数和 SM 高精度:更新" [Nucl.
原摘要的第 3 和第 4 部分被修改为:3.我使用这些新的 D=6,8 功率修正值从 BNP 最低矩中提取 αs。对 αs4 阶,我在 SVZ 扩展中发现:αs(Mτ)|e+e-SVZ=0.3081(49)fit(71)αs5 [resp. 0.3260(47)fit(62)αs5]意味着固定阶(FO)[respect. Contour Improved (CI)]PT 序列的 αs(MZ)|e+e-SVZ=0.1170(6)(3)evol [resp. 0.1192(6)(3)evol] 。它们导致平均值:αs(Mτ)|e+e-SVZ=0.3179(58)fit(81)syst 和 αs(MZ)|e+e-SVZ=0.1182(12)(3)evol,其中系统误差(syst)考虑了 FO 和 CI 结果之间的差异。利用最低BNP矩,我们从τ衰变数据的矢量(V)分量得到:αs(Mτ)|τ,VSVZ=0.3128(19)fit(77)αs5 [resp. 0.3291(25)fit(65)αs5] 意味着 FO [resp. CI] PT 系列的 αs(MZ)|τ,VSVZ=0.1176(10)(3)evol[resp. 0.1196(8)(3)evol],得出平均值:αs(Mτ)|τ,VSVZ=0.3219(52)(91)syst,从而得出:αs(MZ)|τ,VSVZ=0.1187(13)(3)evol。从 e+e- 和 τ 衰变数据得出的两个测定值的平均值是:αs(Mτ)〉=0.3198(72),这意味着〈αs(MZ)〉=0.1185(9)(3)evol.4。 第10节和第11节讨论了SVZ扩展之外的一些(最终)贡献(1/Q2、瞬子和对偶违反),预计这些贡献相对较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信